1 |
Contract knit : Explores form possibilities in knitwear through material interactionsLarsson, Sofie January 2015 (has links)
The focus of this degree work is on material interaction within the field of knitwear. Material combinations are often seen in fashion as a decorative effect to add shine, transparency or blocks of colour. The materials are put together as one flat material. This work embraces the different qualities and explores the possibilities to use material interaction as a way of creating form on the body. To achieve this, material experiments have been made to find combinations that had a big impact on each other. The materials that were found to be most suitable for this were the combination of metal and lycra yarn. This combination showed contrast in both volume and in density. The result is a collection of seven examples that is based from square knitted pieces where the interaction changes the form of the material and the garment. Creating form from material combination could lead to a new method of creating garments with larger form possibilities than is seen today in ready to wear knitted garments.
|
2 |
Roles of Polymer Crosslinking Density and Crystallinity in Regulating Surface Characteristics and Pre-osteoblastic MC3T3 Cell BehaviorWang, Kan 01 August 2011 (has links)
This dissertation presents material design strategies to investigate cell-biomaterial interactions on specific biocompatible polymers and polymer blends by using mouse pre-osteoblastic MC3T3 cells aiming for potential applications in bone tissue engineering. Chapter 1 reviews some related background knowledge including polymeric biomaterials for tissue engineering, cell-biomaterial interaction, synthetic photo-crosslinkable and degradable polymers, and the effect of surface features on osteoblast cell responses. Chapter 2 presents photo-crosslinkable composites of poly(propylene fumarate) (PPF), an injectable and biodegradable polyester, and methacryl-polyhedral oligomeric silsesquioxane (mPOSS), which has eight methacryl groups tethered with a cage-like hybrid inorganic-organic nanostructure, for bone tissue engineering applications. Blending mPOSS with PPF was found to decrease the viscosity of PPF, expedite photo-crosslinking process, increase tensile modulus and accelerate hydrolytic degradation of crosslinked PPF/mPOSS while it did not significantly alter surface wettability, protein adsorption, and cell response. Chapter 3 demonstrates a polymer blend composed of amorphous PPF and semicrystalline poly(ε-caprolactone) (PCL), a widely used biocompatible and biodegradable polymer, in both uncrosslinked and photo-crosslinked forms. Thermal, rheological, mechanical properties as well as surface hydrophilicity and morphology can be well controlled by crosslinking density and crystallinity. Distinct cell attachment, spreading, and proliferation have been found to PPF/PCL blends in the presence or absence of cross-links. Chapter 4 and 5 describe the crystallization induced banded spherulitic morphologies in PPF/PCL blends and PCL homo-blends and their preliminary biological evaluation. Thermal properties, crystallization kinetics, and surface morphology of these blends can be regulated by isothermal crystallization temperature and composition. Surface roughness has been found to play an important role in influencing protein adsorption and cell response. Chapter 6 introduces a newly synthesized biodegradable elastomer, poly(ε-caprolactone) triacrylate (PCLTA), with two different molecular weights resulting in distinct mechanical properties at physiological temperature. Using replica molding from silicon wafers, photo-crosslinked PCLTA substrates with concentric micro-grooves have been successfully fabricated. MC3T3 cell attachment, proliferation, and differentiation could be better supported by stiffer substrates while not significantly influenced by micro-groove dimensions. Cell orientation, nuclei shape and localization, mineralization, and gene expression level of osteocalcin have been found to be more significant on narrower micro-grooves when groove depth was 10 μm.
|
3 |
Etude des processus thermophysiques en régime d'interaction laser/matière nanoseconde par pyro/réflectométrie rapide / Fast pyro/reflectometry study of thermophysical processus induced by nanosecond laser/material interactionAmin Chalhoub, Eliane 10 December 2010 (has links)
Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux. / The recent development of nanotechnology has made the study and the characterisation of thermal properties of thin films and nanomaterials very important for the development and the quality of new technologies. Our experimental setup is designed and built in order to study different phenomena, in real time, that arise while the interaction of a laser with materials at the nanosecond scale. This system is composed of two complementary optical diagnostics, the time resolved reflectivity and the fast infrared pyrometry. First, we have shown the ability to study in real time the surface structural changes in the case of a thin metal layer deposited on an insulating substrate, the phenomenon of photoluminescence and the kinetics of melting/resolidification and also the ablation. In addition, we present a novel method in order to determine the thermal properties (volumetric heat capacity and thermal conductivity) of nanostructured surfaces. The analysis is based on the use of a proven theoretical model that is adjusted with an optimisation algorithm on our experimental measurements.
|
4 |
Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural CeramicsVora, Hitesh D. 12 1900 (has links)
The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a consequence, it is extremely challenging to investigate the evolution of surface topography through experimental analyses. To address this issue, an integrated experimental and computational (multistep and multiphysics based finite-element modeling) approach was employed to understand the influence of laser processing parameters to effectively control the various thermo-physical effects (recoil pressure, Marangoni convection, and surface tension) during transient physical processes (melting, vaporization) for controlled surface topography (surface finish). The results indicated that the material lost due to evaporation causes an increase in crater depth of machined cavity, whereas liquid expulsion created by the recoil pressure increases the material pileup height around the lip of machined cavity, the major attributes of surface topography (roughness). Also, it was found that the surface roughness increased with increase in laser energy density and pulse rate (from 10 to 50Hz), and with the decrease in distance between two pulses (from 0.6 to 0.1mm) or the increase in lateral and transverse overlap (0, 17, 33, 50, 67, and 83%). The results of the computational model are also validated by experimental observations with reasonably close agreement.
|
5 |
A unified plasma-materials finite element model of lightning strike interaction with carbon fiber composite materialsAider, Youssef 09 August 2019 (has links)
This work is devoted to the computational modeling of a lightning strike electric arc discharge induced air plasma and the material response under the lightning strike impact. The simulation of the lightning arc plasma has been performed with Finite element analysis in COMSOL Multiphysics. The plasma is regarded as a continuous medium of a thermally and electrically conductive fluid. The electrode mediums, namely the cathode and anode, have also been included in the simulation in a unified manner, meaning that the plasma and electrode domains are simulated concurrently in one numerical model. The aim is to predict the lightning current density, and the heat flux impinged into the anode's material surface, as well as the lightning arc expansion and pressure and velocity of the plasma flow. Our predictions have been validated by the existing experimental data and other numerical predictions reported by former authors.
|
6 |
Engineering of Surfaces by the Use of Detonation NanodiamondsBalakin, Sascha 22 July 2020 (has links)
The main objective of this work was to manufacture and to characterize detonation nanodiamond (ND) coatings with high biocompatibility and high drug loading capability. This was achieved via the integration of functionalized NDs into standard coating systems. The examination of cell proliferation and cell differentiation supported the biological assessment of the ND-enhanced coatings. As a first step, an osteogenic peptide was covalently grafted onto oxidized NDs. Accordingly, carboxylic acid derivativ is were generated on the as-received ND surface via an optimized heat treatment. The osteogenic peptide was tethered to the oxidized ND surface using a carbodiimide crosslinking method. The multifaceted ND preparation and disaggregation facilitated the powder handling during the conjugation process. Moreover, antibiotics were physisorbed onto
as-received NDs to add antimicrobial properties. The correlated surface loading of NDs was determined using various absorption spectroscopy methods such as fluorescence and ultraviolet-visible spectroscopy.
Peptide-conjugated NDs and NDs with untreated surface chemistry have been immobilized on different biomaterials using liquid phase deposition techniques. Herein, polyelectrolyte multilayers (PEMs) were utilized, among others, due to their self-organization and universal applicability for numerous substrates. In order to assess the cell-material interactions, human fetal osteoblasts (hFOBs) were cultured. The hFOBs exhibited a high cell proliferation, high cell density, and sound cellular adhesion, which proves the high biocompatibility of PEMs containing NDs. The present study represents a novel and reliable strategy towards a public approved composite coating. The potential of NDs as a biocompatible delivery platform and as a coating material for biomaterials has been demonstrated. This technology will be useful for the development and optimization of next-generation drug delivery vehicles, e.g. drug-eluting coatings, as well as for biomaterials in general.:Abstract i
Kurzfassung iii
List of Figures v
List of Tables vi
Abbreviations vii
1 Introduction and Objectives 1
1.1 Scope of the Thesis 3
2 Fundamentals 9
2.1 Overview of Biomaterials 9
2.2 Surface Modification Techniques of Biomaterials 11
2.3 Cellular Response to Tailored Biomaterials 13
2.4 Essential Features of Detonation Nanodiamonds 15
2.4.1 Biomedical Applications 16
2.4.2 Chemical Functionalization Pathways 19
2.4.3 Colloidal Stability 21
3 Materials and Methods 25
3.1 Wet Chemical and High-temperature Oxidation of Detonation Nanodiamonds 26
3.2 Disaggregation of Detonation Nanodiamond Agglomerates 26
3.3 Grafting of Biomolecules onto Detonation Nanodiamonds 27
3.4 Macroscopic Surface Modification of Biomaterials 28
3.5 Characterization Techniques 30
3.5.1 Morphology 30
3.5.2 Colloidal Stability and ND Crystal Structure 30
3.5.3 ND Surface Chemistry and Surface Loading 31
3.5.4 Alkaline Phosphatase Activity of Human Mesenchymal Stem Cells 31
3.5.5 Cell Viability and Immunofluorescence Staining of Human Fetal Osteoblasts 32
4 Surface Modification of Detonation Nanodiamonds 35
4.1 Comparison of Wet Chemical and High-temperature Oxidation 35
4.1.1 Absorption Spectroscopy 35
4.1.2 Crystal Structure of Dry-oxidized NDs 37
4.2 Chemisorption of Bone Morphogenetic Protein-2 Derived Peptide 38
4.3 Physisorption of Amoxicillin 42
4.4 Conclusions 44
5 Coatings Exhibiting Detonation Nanodiamonds 47
5.1 Colloidal Stability of Aqueous ND Suspensions 47
5.1.1 ND Agglomerate Size and Zeta Potential Measurement 47
5.1.2 Influence of pH and Ion Concentration 50
5.2 Electrophoretic Deposition and Covalent Attachmen 51
5.3 Polyelectrolyte Multilayers 55
5.4 Conclusions 56
6 Biological Assessment of Detonation Nanodiamond Coatings 59
6.1 Alkaline Phosphatase Activity of Mesenchymal Stem Cells 59
6.2 Cellular Response of Osteoblasts 61
6.2.1 Cell Morphology 61
6.2.2 Cell Adhesion . 64
6.2.3 Cell Viability 66
6.3 Conclusions 68
7 Summary and Outlook 71
Acknowledgements 77
References 79
Appendix 109
List of Publications 113 / Das Hauptziel der Arbeit bestand in der Herstellung sowie der Charakterisierung von Beschichtungen aus Detonationsnanodiamanten (ND), welche eine hohe Biokompatibilität und eine hoheWirkstoffbeladbarkeit aufweisen sollten. Dieses Ziel wurde durch die Integration funktionalisierter ND in herkömmliche Beschichtungssysteme erreicht. Die biologische Beurteilung von den ND-verstärkten Beschichtungen wurde durch Untersuchungen der Zellproliferation und der Zelldifferenzierung untermauert. Im ersten Schritt wurde ein Peptid mit knochenbildenden Eigenschaften kovalent an oxidierte ND angebunden. Mittels einer optimierten Wärmebehandlung wurden Carbonsäurederivate auf der ND-Oberfläche erzeugt. Anschließend wurde das Peptid unter Verwendung eines Carbodiimid-Vernetzungsmittels an die oxidierte ND-Oberfläche angebunden. Während des Konjugationsprozesses erleichterte die facettenreiche ND-aufbereitung und -disaggregation die Pulverhandhabung. Außerdem wurden Antibiotika auf den ND adsorbiert, um antimikrobielle Eigenschaften zu erzeugen. Die entsprechende Oberflächenbeladung der ND wurde unter Verwendung verschiedener absorptionsspektroskopischer
Ansätze wie Fluoreszenz- und UV/Vis-Spektroskopie bestimmt. Biofunktionale und unbehandelte ND wurden über Flüssigphasenabscheidung auf verschiedene Biomaterialien aufgebracht. Hierbei wurden unter anderem Polyelektrolyt-Mehrschichtsysteme aufgrund ihrer Selbstorganisation und universellen Anwendbarkeit auf zahlreiche Substrate eingesetzt. Um die Zellantwort auf die mehrschichtigen ND zu bewerten, wurden humane Osteoblasten (hFOB) kultiviert. Die hFOB zeigten eine hohe Zellproliferation, eine hohe Zelldichte und eine hohe Zelladhäsion, was die hohe Biokompatibilität von mehrschichtigen ND belegt. Die vorliegende Arbeit stellt eine neuartige und zuverlässige Strategie für eine allgemein anerkannte Verbundbeschichtung dar. Das Potenzial von ND als biokompatible Medikamententräger und als Beschichtungsmaterial für Biomaterialien konnte aufgezeigt werden. Die dargestellte Technologie kann für die Entwicklung und Optimierung von Medikamententrägern der nächsten Generation,
z. B. in arzneimittelfreisetzenden Beschichtungen, sowie für Biomaterialien im Allgemeinen verwendet werden.:Abstract i
Kurzfassung iii
List of Figures v
List of Tables vi
Abbreviations vii
1 Introduction and Objectives 1
1.1 Scope of the Thesis 3
2 Fundamentals 9
2.1 Overview of Biomaterials 9
2.2 Surface Modification Techniques of Biomaterials 11
2.3 Cellular Response to Tailored Biomaterials 13
2.4 Essential Features of Detonation Nanodiamonds 15
2.4.1 Biomedical Applications 16
2.4.2 Chemical Functionalization Pathways 19
2.4.3 Colloidal Stability 21
3 Materials and Methods 25
3.1 Wet Chemical and High-temperature Oxidation of Detonation Nanodiamonds 26
3.2 Disaggregation of Detonation Nanodiamond Agglomerates 26
3.3 Grafting of Biomolecules onto Detonation Nanodiamonds 27
3.4 Macroscopic Surface Modification of Biomaterials 28
3.5 Characterization Techniques 30
3.5.1 Morphology 30
3.5.2 Colloidal Stability and ND Crystal Structure 30
3.5.3 ND Surface Chemistry and Surface Loading 31
3.5.4 Alkaline Phosphatase Activity of Human Mesenchymal Stem Cells 31
3.5.5 Cell Viability and Immunofluorescence Staining of Human Fetal Osteoblasts 32
4 Surface Modification of Detonation Nanodiamonds 35
4.1 Comparison of Wet Chemical and High-temperature Oxidation 35
4.1.1 Absorption Spectroscopy 35
4.1.2 Crystal Structure of Dry-oxidized NDs 37
4.2 Chemisorption of Bone Morphogenetic Protein-2 Derived Peptide 38
4.3 Physisorption of Amoxicillin 42
4.4 Conclusions 44
5 Coatings Exhibiting Detonation Nanodiamonds 47
5.1 Colloidal Stability of Aqueous ND Suspensions 47
5.1.1 ND Agglomerate Size and Zeta Potential Measurement 47
5.1.2 Influence of pH and Ion Concentration 50
5.2 Electrophoretic Deposition and Covalent Attachmen 51
5.3 Polyelectrolyte Multilayers 55
5.4 Conclusions 56
6 Biological Assessment of Detonation Nanodiamond Coatings 59
6.1 Alkaline Phosphatase Activity of Mesenchymal Stem Cells 59
6.2 Cellular Response of Osteoblasts 61
6.2.1 Cell Morphology 61
6.2.2 Cell Adhesion . 64
6.2.3 Cell Viability 66
6.3 Conclusions 68
7 Summary and Outlook 71
Acknowledgements 77
References 79
Appendix 109
List of Publications 113
|
7 |
Application of the mesh-free smoothed particle hydrodynamics method in the modelling of direct laser interference patterningDemuth, Cornelius 23 March 2022 (has links)
In this work, the mesh-free smoothed particle hydrodynamics (SPH) method is applied in the modelling of the direct laser interference patterning (DLIP) of metal surfaces. The DLIP technique allows the fabrication of periodic microstructures on technical surfaces using nanosecond laser pulses. Here, the interference of two coherent partial beams with a sinusoidal energy density distribution of the interference pattern is concerned, which is employed to generate line-like surface structures. However, the mechanisms effective during nanosecond pulsed DLIP of metals are not yet fully understood. The physical phenomena occurring due to the interaction of laser radiation with metallic materials are first considered and the governing differential equations are stated.
The fundamentals of the SPH method and the approaches to the numerical treatment of the conservation equations are presented. Physical processes relevant to the modelling of laser material processing are solved by suitable SPH techniques, i.e. the approximations are verified with respect to test problems with analytical or known numerical solutions.
Consequently, the SPH method is used to devise a thermal model of the DLIP process, considering the absorption of the laser radiation, the heat conduction into the workpiece and the latent heat of involved phase changes. This model is extended to compute the melt pool convection during DLIP, which is driven by surface tension gradients due to temperature gradients. For this purpose, an incompressible SPH (ISPH) method is used, representing a novel approach to the modelling of the laser-induced melt pool flow.
The numerical model is employed to perform simulations of DLIP on metal substrates. Firstly, the thermal simulation of the single pulse patterning of stainless steel is in good agreement with experimental results. The application of DLIP to stainless steel and aluminium is then simulated by the comprehensive model including the melt pool flow. Moreover, this model is further extended to consider the non-linear temperature dependence of surface tension, as in liquid steel in the presence of a surface active element.
The simulation results reveal a distinct behaviour of stainless steel and aluminium substrates. A markedly deeper melt pool and considerable velocity magnitudes of the thermocapillary convection at the melt surface are computed for DLIP of aluminium. In contrast, the melt pool flow is less pronounced during DLIP of stainless steel, whereas higher surface temperatures are predicted. Hence the Marangoni convection is a conceivable effective mechanism during the structuring of aluminium at moderate energy density. The different character of the melt pool convection during DLIP of stainless steel and aluminium is corroborated by experimental observations. Furthermore, the simulations for stainless steel with different sulphur content indicate distinct melt pool flow patterns and support the explanation of the microstructures found after DLIP experiments.
The role of vapourisation and the induced recoil pressure in the microstructure evolution due to DLIP on metal substrates at elevated fluences could be prospectively investigated. In this regard, the consideration of the melt pool surface deformation in the ISPH algorithm, and particularly a suitable pressure boundary condition, is required.:I The research problem
1 Motivation
2 Modelling of laser material processing
2.1 Interaction of laser radiation with materials
2.1.1 Absorption of laser radiation
2.1.2 Heat conduction and phase change
2.1.3 Molten pool convection
2.1.4 Vapourisation regime
2.2 Mathematical modelling of laser material interaction
2.2.1 Conservation equations in Lagrangian formulation
2.2.2 Influence of surface tension
3 State of the art in laser microprocessing and the SPH method
3.1 Laser microprocessing
3.2 Simulation of direct laser interference patterning
3.3 The mesh-free smoothed particle hydrodynamics method
3.3.1 Fundamental approximations and kernel function
3.3.2 Particle distribution and interaction length
3.3.3 Approximation of derivatives
3.3.4 Treatment of boundaries
3.3.5 Neighbourhood search
3.4 Numerical modelling of laser material processing by SPH
II SPH model development for direct laser interference patterning
4 SPH modelling of heat transfer and fluid flow
4.1 Solution of the heat diffusion equation
4.2 Formulation of equations governing fluid flow
4.2.1 Equation of continuity
4.2.2 Approximation of pressure gradient term
4.2.3 Treatment of viscosity
4.3 Weakly compressible SPH method for solving fluid flow
4.3.1 Particle motion
4.3.2 Time integration
4.3.3 Time step criteria
4.4 Incompressible SPH method for solving fluid flow
4.4.1 Time integration
4.4.2 Discrete incompressible SPH algorithm
4.4.3 Time step criteria
4.5 Simulation of thermal fluid flow using ISPH
4.5.1 Semi-implicit time integration
4.5.2 Solution of the pressure Poisson equation
5 Verification of the SPH implementation
5.1 Transient heat conduction in laser-irradiated plate
5.1.1 Problem description
5.1.2 Dimensionless formulation
5.1.3 Numerical solution and results
5.2 Viscous flow
5.2.1 Couette flow
5.2.2 Poiseuille flow
5.3 Thermal convection
5.3.1 Natural convection in a square cavity
5.3.2 Rayleigh--Marangoni--Bénard convection in liquid aluminium
6 SPH model of direct laser interference patterning
6.1 Characteristics of the process
6.2 Thermal model
6.2.1 Non-dimensionalisation
6.2.2 Numerical solution of governing equation
6.2.3 Verification of the computation
6.2.4 Numerical test
6.3 Thermofluiddynamic model
6.3.1 Non-dimensionalisation
6.3.2 Numerical solution of governing equations
6.3.3 Discretisation
6.3.4 Resolution independence study
7 SPH simulation of direct laser interference patterning
7.1 Thermal model
7.1.1 DLIP experiments on stainless steel substrates
7.1.2 Thermal simulation of DLIP on steel substrate
7.2 Thermofluiddynamic model
7.2.1 Material properties and simulation parameters
7.2.2 Numerical results for steel substrate
7.2.3 Numerical results for aluminium substrate
7.2.4 Discussion and comparison with experiments
7.3 Extended thermofluiddynamic model
7.3.1 Model parameters
7.3.2 Influence of sulphur content on DLIP of stainless steel
8 Conclusions and outlook
Bibliography / In dieser Arbeit wird die direkte Laserinterferenzstrukturierung (Direct Laser Interference Patterning, DLIP) von Metallen mit der netzfreien Smoothed Particle Hydrodynamics (SPH) Methode modelliert. Das DLIP-Verfahren ermöglicht die Fertigung periodischer Mikrostrukturen auf technischen Oberflächen mit Nanosekunden-Laserpulsen. Hier wird die Zweistrahlinterferenz mit einer sinusförmigen Energiedichteverteilung des Interferenzmusters behandelt, die linienförmige Oberflächenstrukturen erzeugt. Die bei der direkten Interferenzstrukturierung von Metallen mit Nanosekunden-Laserpuls wirksamen Mechanismen sind jedoch noch nicht verstanden. Die aufgrund der Wechselwirkung von Laserstrahlung mit metallischen Werkstoffen auftretenden physikalischen Phänomene werden zuerst betrachtet und die sie bestimmenden Differentialgleichungen angegeben.
Die Grundlagen der SPH-Methode sowie deren Herangehensweisen an die numerische Behandlung der Erhaltungsgleichungen werden vorgestellt. Für die Modellierung der Lasermaterialbearbeitung relevante physikalische Vorgänge werden mittels geeigneter SPH-Ansätze gelöst, d. h. anhand von Testproblemen mit bekannter Lösung verifiziert.
Das mit SPH zunächst erstellte thermische Modell des DLIP-Prozesses berücksichtigt die Absorption der Laserstrahlung, die Wärmeleitung im Werkstück und die Enthalpien der Phasenübergänge. Das Modell wird zur Berechnung der Schmelzbadströmung bei der DLIP-Anwendung, angetrieben von Oberflächenspannungsgradienten verursacht durch Temperaturgradienten, erweitert. Hierbei wird eine inkompressible SPH (ISPH) Methode eingesetzt, in der Simulation laserinduzierter Schmelzbäder ein neuartiger Ansatz.
Mit dem numerischen Modell werden Simulationen des DLIP-Verfahrens für metallische Substrate durchgeführt. Die thermische Simulation der Strukturierung von Edelstahl stimmt gut mit einem Experiment überein. Weiterhin wird die Anwendung von DLIP auf Edelstahl und Aluminium mit dem thermofluiddynamischen Modell simuliert. Außerdem wird das Modell um eine nichtlinear temperaturabhängige Oberflächenspannung, wie sie für Stahlschmelze in Anwesenheit eines oberflächenaktiven Elements vorliegt, ergänzt.
Die Simulationen zeigen ein verschiedenes Verhalten von Edelstahl und Aluminium. Bei der Strukturierung von Aluminium treten ein deutlich tieferes Schmelzbad und erhebliche Geschwindigkeitsbeträge der thermokapillaren Konvektion an der Schmelzeoberfläche auf. Hingegen ist die Strömung bei der DLIP-Anwendung auf Edelstahl schwächer ausgeprägt und höhere Oberflächentemperaturen werden erreicht. Die Marangoni-Konvektion ist daher ein wirksamer Schmelzeverdrängungsmechanismus bei der Strukturierung von Aluminium mit moderater Energiedichte. Die unterschiedliche Schmelzbadströmung für die beiden Werkstoffe wird durch experimentelle Beobachtungen bestätigt. In Abhängigkeit des Schwefelgehalts von Edelstahl zeigen Simulationen verschiedene Strömungsmuster im Schmelzbad und unterstützen die Erklärung experimentell festgestellter Mikrostrukturen.
Die Untersuchung der Wirkung der Verdampfung und des induzierten Rückstoßdruckes auf die Strukturausbildung bei höheren Fluenzen erfordert die Berücksichtigung der Oberflächendeformation sowie eine geeignete Druckrandbedingung im ISPH-Algorithmus.:I The research problem
1 Motivation
2 Modelling of laser material processing
2.1 Interaction of laser radiation with materials
2.1.1 Absorption of laser radiation
2.1.2 Heat conduction and phase change
2.1.3 Molten pool convection
2.1.4 Vapourisation regime
2.2 Mathematical modelling of laser material interaction
2.2.1 Conservation equations in Lagrangian formulation
2.2.2 Influence of surface tension
3 State of the art in laser microprocessing and the SPH method
3.1 Laser microprocessing
3.2 Simulation of direct laser interference patterning
3.3 The mesh-free smoothed particle hydrodynamics method
3.3.1 Fundamental approximations and kernel function
3.3.2 Particle distribution and interaction length
3.3.3 Approximation of derivatives
3.3.4 Treatment of boundaries
3.3.5 Neighbourhood search
3.4 Numerical modelling of laser material processing by SPH
II SPH model development for direct laser interference patterning
4 SPH modelling of heat transfer and fluid flow
4.1 Solution of the heat diffusion equation
4.2 Formulation of equations governing fluid flow
4.2.1 Equation of continuity
4.2.2 Approximation of pressure gradient term
4.2.3 Treatment of viscosity
4.3 Weakly compressible SPH method for solving fluid flow
4.3.1 Particle motion
4.3.2 Time integration
4.3.3 Time step criteria
4.4 Incompressible SPH method for solving fluid flow
4.4.1 Time integration
4.4.2 Discrete incompressible SPH algorithm
4.4.3 Time step criteria
4.5 Simulation of thermal fluid flow using ISPH
4.5.1 Semi-implicit time integration
4.5.2 Solution of the pressure Poisson equation
5 Verification of the SPH implementation
5.1 Transient heat conduction in laser-irradiated plate
5.1.1 Problem description
5.1.2 Dimensionless formulation
5.1.3 Numerical solution and results
5.2 Viscous flow
5.2.1 Couette flow
5.2.2 Poiseuille flow
5.3 Thermal convection
5.3.1 Natural convection in a square cavity
5.3.2 Rayleigh--Marangoni--Bénard convection in liquid aluminium
6 SPH model of direct laser interference patterning
6.1 Characteristics of the process
6.2 Thermal model
6.2.1 Non-dimensionalisation
6.2.2 Numerical solution of governing equation
6.2.3 Verification of the computation
6.2.4 Numerical test
6.3 Thermofluiddynamic model
6.3.1 Non-dimensionalisation
6.3.2 Numerical solution of governing equations
6.3.3 Discretisation
6.3.4 Resolution independence study
7 SPH simulation of direct laser interference patterning
7.1 Thermal model
7.1.1 DLIP experiments on stainless steel substrates
7.1.2 Thermal simulation of DLIP on steel substrate
7.2 Thermofluiddynamic model
7.2.1 Material properties and simulation parameters
7.2.2 Numerical results for steel substrate
7.2.3 Numerical results for aluminium substrate
7.2.4 Discussion and comparison with experiments
7.3 Extended thermofluiddynamic model
7.3.1 Model parameters
7.3.2 Influence of sulphur content on DLIP of stainless steel
8 Conclusions and outlook
Bibliography
|
Page generated in 0.1477 seconds