• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue fracture characterization by cyclic material forces in viscoelastic solids at small strain

Khodor, Jad, Özenç, Kaan, Qinami, Aurel, Lin, Guoyu, Kaliske, Michael 11 June 2024 (has links)
The study at hand introduces a newapproach to characterize fatigue crack growth in small strain linear viscoelastic solids by configurational mechanics. In this study, Prony series with n-Maxwell elements are used to describe the viscoelastic behavior. As a starting point in this work, the local balance of energy momentum is derived using the free energy density. Moreover, at cyclic loading, the cyclic free energy substitutes the free energy. Using the cyclic free energy, the balance of cyclic energy momentum is obtained. The newly derived balance law at cyclic loading is appropriate for each cycle. In the finite element framework, nodal material forces and cyclic nodal material forces are obtained using the weak and discretized forms of the balance of energy momentum and cyclic energy momentum, respectively. The crack driving force and the cyclic crack driving force are determined by the nodal material forces and the cyclic nodal material forces, respectively. Finally, numerical examples are shown to illustrate path-independence of the domain integrals using material forces and cyclic material forces. The existence of the balance of energy momentum and cyclic energy momentum are also illustrated by numerical examples.

Page generated in 0.0579 seconds