1 |
Middle grades in-service teachers pedagogical content knowledge of student internal representation of equivalent fractions and algebraic expressionsWoodard, Leslie Dorise 15 May 2009 (has links)
This study examined teacher pedagogical content knowledge changes through a
Middle School Mathematics Program professional development workshop, development
of noticing use of student representations, and teacher changes in hypothetical learning
trajectories due to noticed aspects of student representation corresponding to the
hypothetical learning trajectory model.
Using constant comparatives and repertory grid analysis, data was collected in
two phases. Phase one, the teacher pre-test, occurred at the beginning of the summer of
the 2003 professional development workshop. Phase two, the teacher post-test, occurred
at the end of the workshop. Twenty-four teachers supplied data on pre- and post-tests
during phases one and two. Eleven teachers were from Texas and 13 from Delaware. Six
Texas and eight Delaware teachers worked with the algebraic expression concepts. Five
Texas and five Delaware teachers worked with the equivalent fraction concepts. Four
mathematics education researchers from Texas, three from Delaware, and two from the American Association for the Advancement of Science participated in facilitating the
professional development.
The results show that teacher pedagogical content knowledge changes with the
help of a professional development partnership. The differences in knowledge can be
measured with a hierarchal cluster analysis of the repertory grid by analyzing
relationships between constructs and elements. Teacher hypothetical learning trajectories
change depending on student representations of what they do and do not know about
concepts.
The study encourages teachers to use knowledge of students’ representation
about a concept to determine what to teach next and how the concept should be taught.
Teachers should use different types of representations including formal, imagistic, and
action representations in teaching mathematical ideas. This will promote student
development in all process standards including reasoning and proof, communication,
problem solving, and connection.
The findings suggest that teacher pedagogical content knowledge can be
redefined during professional development partnerships. Furthermore, teachers’
knowledge of representation is varied and emphasis on the imagistic representation
should be explored further. Finally, professional development models that facilitate how
to extract what a student does and does not know based on representation, can be the
basis for defining hypothetical learning trajectories.
|
2 |
As representações matemáticas mediadas por softwares educativos em uma perspectiva semiótica : uma contribuição para o conhecimento do futuro professor de matemática /Farias, Maria Margarete do Rosário. January 2007 (has links)
Orientador: Rosana Giaretta Sguerra Miskulin / Banca: Rômulo Campos Lins / Banca: Hermes Renato Hildebrand / Resumo: Esta pesquisa realiza um estudo epistemológico das representações matemáticas, mediadas por softwares educativos, em uma perspectiva Semiótica, objetivando investigar as diferentes formas representativas de conceitos matemáticos como dimensões didático-pedagógicas, implícitas no conhecimento do professor em formação inicial, no ensino do Cálculo Diferencial e Integral - CDI I. Nessa perspectiva temos como meta principal responder a seguinte questão norteadora: Quais são as contribuições das representações matemáticas em uma perspectiva semiótica, mediadas por softwares educativos, para o conhecimento do Futuro Professor de Matemática? Os aportes teóricos que fundamentam este trabalho de investigação constituem-se na Formação Inicial de Professores e Semiótica. A Metodologia adotada é de abordagem qualitativa, sob a qual trabalhamos com os alunos do primeiro ano do curso de Matemática, do IGCE/ UNESP/Rio Claro, na disciplina CDI I. A análise baseada em quatro sub-panoramas constituídos pelas entrevistas realizadas com os professores e estudantes atividades exploratório-investigativas desenvolvidas junto aos estudantes, além das observações realizadas em classe da turma do 1º. Ano de Matemática, indica que ao explorarmos o universo signíco das representações, agregamos valores à discussão da constituição do conhecimento de futuros professores de Matemática, ressaltando a importância desses estudantes/professores, conscientizarem-se da perspectiva Semiótica implícita à abordagem de transitar entre várias representações matemáticas no processo de investigação e interpretação dos conceitos, por meio de softwares próprios à disciplina, aumentando assim o grau de compreensão dos mesmos. / Abstract: This research is an epistemological study of mathematical representations, through educational software, in a semiotic perspective, aiming to investigate different ways of representing mathematical concepts as didactic-pedagogical dimensions, inherent to the teachers knowledge in Initial Education, in the teaching of Calculus I CI. From this perspective we aim to answer the question What are the contributions of mathematical representations, in a semiotic perspective through educational software, for the knowledge of the future teacher? The theory that supports this work is in the Teachers Education and Semiotics. The methodology adopted has a qualitative approach that we have worked with students of the first year of the Mathematics course of IGCE / UNESP/Rio Claro, in the subject CI. The analysis is based on four sub-panorama constituted by interviews made with teachers and students, working with exploring-investigative activities, developed and applied with the students, as well as observations made in the classroom of the first year of the Mathematics course. It indicates that, in the process of exploration of signics universe of representations, we add value to the discussion about the constitution of the future teachers' knowledge, highlighting the importance of these students/teachers to figure out the semiotics perspective, inherent to an approach that propitiates different mathematical representations in the process of investigation and interpretation of concepts, through specific software, related to the subject, increasing the understanding of teachers and students. / Mestre
|
3 |
Middle school students' representational understandings and justification schemes: gleanings from cognitive interviewsMatteson, Shirley Marie 15 May 2009 (has links)
This dissertation investigated several aspects of middle graders’ mathematical understanding based on representational models. Twenty (11 male, 9 female) sixth grade students were interviewed about their solution strategies and answer justifications when solving difficult mathematics problems. The interview participants represented a stratified demographic sampling of the student body of a culturally diverse middle school in a suburban school district in the southwestern United States.
Data from the interviews were analyzed qualitatively. This involved “chunking” cognitive interview transcripts into sections. Major themes were identified and manuscripts were developed around those themes. One theme examined the interviewers’ ethic of care behaviors. Carol Gilligan noted differences in male and female ethic of care behaviors, but it was Nel Noddings who discussed the importance of such behaviors in the educational community. So what impact could the gender of the interviewer have on cognitive interviews? After considering ethic of care behaviors explicated by Hayes, Ryan and Zseller’s (1994) study with middle grades students, the interview transcripts were examined for specific positive and negative ethic of care behaviors.
The theme of students’ justifications of mathematical solutions was also selected. The major undertaking involved developing a justification scheme applicable across mathematical strands and grade levels. The justification scheme that emerged was based on the work of Guershon Harel and Larry Sowder. The first-level schemes of Language, Mechanistic, Authoritarian, and Visual were used to classify and define the justifications. Several second-level schemes were also defined. The justification scheme framework was applied to students’ cognitive interview responses on four difficult mathematics problems.
The third theme investigated the symbiosis of justification schemes with mathematical representations. This study examined possible links between representational formats and justification scheme categories. The premise of this study was that representations “trigger” students’ choices of justification schemes. Student responses were analyzed as to which aspect of the mathematical representation received the students’ initial attention. The students’ understanding of the representation was pivotal to their solution, as well as the students’ reasoning, or justification, of the answer. Students focused on key aspects of the problem and developed solutions based on that information.
|
4 |
As representações matemáticas mediadas por softwares educativos em uma perspectiva semiótica: uma contribuição para o conhecimento do futuro professor de matemáticaFarias, Maria Margarete do Rosário [UNESP] 18 June 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:54Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-06-18Bitstream added on 2014-06-13T18:21:28Z : No. of bitstreams: 1
farias_mmr_me_rcla.pdf: 8056243 bytes, checksum: 9a87ffbde83e77810c4ed6cb496cbe39 (MD5) / Uesc / Esta pesquisa realiza um estudo epistemológico das representações matemáticas, mediadas por softwares educativos, em uma perspectiva Semiótica, objetivando investigar as diferentes formas representativas de conceitos matemáticos como dimensões didático-pedagógicas, implícitas no conhecimento do professor em formação inicial, no ensino do Cálculo Diferencial e Integral - CDI I. Nessa perspectiva temos como meta principal responder a seguinte questão norteadora: Quais são as contribuições das representações matemáticas em uma perspectiva semiótica, mediadas por softwares educativos, para o conhecimento do Futuro Professor de Matemática? Os aportes teóricos que fundamentam este trabalho de investigação constituem-se na Formação Inicial de Professores e Semiótica. A Metodologia adotada é de abordagem qualitativa, sob a qual trabalhamos com os alunos do primeiro ano do curso de Matemática, do IGCE/ UNESP/Rio Claro, na disciplina CDI I. A análise baseada em quatro sub-panoramas constituídos pelas entrevistas realizadas com os professores e estudantes atividades exploratório-investigativas desenvolvidas junto aos estudantes, além das observações realizadas em classe da turma do 1º. Ano de Matemática, indica que ao explorarmos o universo signíco das representações, agregamos valores à discussão da constituição do conhecimento de futuros professores de Matemática, ressaltando a importância desses estudantes/professores, conscientizarem-se da perspectiva Semiótica implícita à abordagem de transitar entre várias representações matemáticas no processo de investigação e interpretação dos conceitos, por meio de softwares próprios à disciplina, aumentando assim o grau de compreensão dos mesmos. / This research is an epistemological study of mathematical representations, through educational software, in a semiotic perspective, aiming to investigate different ways of representing mathematical concepts as didactic-pedagogical dimensions, inherent to the teachers knowledge in Initial Education, in the teaching of Calculus I CI. From this perspective we aim to answer the question What are the contributions of mathematical representations, in a semiotic perspective through educational software, for the knowledge of the future teacher? The theory that supports this work is in the Teachers Education and Semiotics. The methodology adopted has a qualitative approach that we have worked with students of the first year of the Mathematics course of IGCE / UNESP/Rio Claro, in the subject CI. The analysis is based on four sub-panorama constituted by interviews made with teachers and students, working with exploring-investigative activities, developed and applied with the students, as well as observations made in the classroom of the first year of the Mathematics course. It indicates that, in the process of exploration of signics universe of representations, we add value to the discussion about the constitution of the future teachers' knowledge, highlighting the importance of these students/teachers to figure out the semiotics perspective, inherent to an approach that propitiates different mathematical representations in the process of investigation and interpretation of concepts, through specific software, related to the subject, increasing the understanding of teachers and students.
|
5 |
OS REGISTROS DE REPRESENTAÇÃO SEMIÓTICA MOBILIZADOS NO ESTUDO DE SISTEMAS LINEARES NO ENSINO MÉDIO / SEMIOTIC REPRESENTATION REGISTERS MOBILIZED IN LINEAR SYSTEM STUDY IN HIGH SCHOOLBoemo, Marinela da Silveira 21 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This research aimed to investigate the study of linear systems through the coordination of
semiotic representations in a high in São Sepé-RS during the school year 2014. Therefore, we
adopted as data collection instruments textbook Novo Olhar Matemática, volume 2 (SOUZA,
2010), the records of Mathematics students notebooks in each of the six high school classes of
the school, and the protocols of three activities sequences developed together with one hundred
and twenty-six students that make up these classes. Thus, we took as methodological framework
the guidelines of qualitative research in the form of case study (LÜDKE; ANDRÉ, 1986)
followed the principles of content analysis (BARDIN, 2011). As a result of the textbook analysis,
we highlight that 16.97% of the questions posed by the book involved exclusively algebraic
register treatment and 3.57% in natural language register. Conversion was present in 79.46% of
the activities and explored a wider range of registers: starting, four; intermediate, eight; and
finishing, six, with 92.13% of the conversion activities mobilized the algebraic record at some
point, 27.91%, the natural language record, and only 9.17%, the graphic record. The analysis of
the student s notebooks revealed that the two teachers favored the algebraic record both in
activities requiring treatment as in conversion. Among the other representational systems taken by
the two teachers as starting records, we identified the algebraic record in symbolic representation
and natural language by Profα and the algebraic record in symbolic representation and algebraic
register in matrix representation by Profβ. Concerning graphic record, except for just one class, it
was awarded timidly in some of the proposed activities to all other classes, but it was restricted to
the 2x2 system. Through the activities sequences, we noted that, in performing treatment in
algebraic register, the students felt more secure and confident than in activities that required
treatment in another representational system. Conversions involving graphic record also enabled
us to see that many students did not identify the relevant visual variables that related algebraic and
graphic register; and they showed not to have clarity on the representation of an ordered pair in
the two-dimensional plane while writing it in algebraic register in the symbolic representation;
and they had no clarity on the concept of proportionality and, consequently, of linear combination
when analyzing the coefficients of the unknowns and independent terms through the algebraic
register in the tabular representation. Furthermore, from arguments in natural language register we
confirmed that students did not identify the relevant visual variables and also lacked clarity
regarding the nomenclature to be adopted to refer to objects that comprise the graphic register.
Thys, we aim that our work has contributed to more people having a view of how the study of
linear systems occurs and how the mobilization of different representational systems promotes the
identification of aspects inherent to this mathematical object. / Esta pesquisa objetivou investigar o estudo de sistemas lineares por meio da coordenação
das representações semióticas no 2º ano do Ensino Médio, em um Colégio de São Sepé/RS,
durante o ano letivo de 2014. Para tanto, adota-se como instrumentos de coleta de dados o volume
2, do livro didático Novo Olhar Matemática (SOUZA, 2010), os registros dos cadernos de
Matemática dos alunos de cada uma das seis turmas de 2° ano do Colégio e os protocolos de três
sequências de atividades desenvolvidas junto aos cento e vinte e seis alunos que compõem essas
turmas. Desse modo, toma-se, como referencial metodológico, as orientações da pesquisa
qualitativa na forma de estudo de caso (LÜDKE; ANDRÉ, 1986) seguido pelos princípios da
análise de conteúdo (BARDIN, 2011). Como resultado da análise do livro didático, destacamos
que 16,97% das questões propostas pelo livro envolverem, exclusivamente, tratamento no registro
algébrico e 3,57%, no registro da língua natural. Já a conversão se fez presente em 79,46% das
atividades e explorou uma diversidade maior de registros, de partida quatro, intermediários oito e
de chegada seis, sendo que 92,13% das atividades de conversão mobilizaram, em algum
momento, o registro algébrico, 27,91%, o registro da língua natural e, em apenas 9,17%, o registro
gráfico. A análise realizada nos cadernos dos alunos revelou que os dois professores privilegiaram
o registro algébrico tanto nas atividades que requerem tratamento quanto nas de conversão. Entre os demais sistemas representacionais tomados pelos dois docentes como registros de partida, identificamos o registro algébrico na representação simbólica e o da língua natural pelo Profα e o
registro algébrico na representação simbólica e o algébrico na representação matricial pelo Profβ.
Quanto ao registro gráfico, com exceção de apenas uma turma, foi contemplado de forma tímida
em algumas das atividades propostas a todas as demais turmas, porém restringiu-se ao sistema
2x2. Por meio das sequências de atividades, evidenciamos que, ao realizarem tratamento no
registro algébrico, os alunos se sentiam mais seguros e confiantes do que nas atividades que
requerem tratamento em outro sistema representacional. Já as conversões envolvendo o registro
gráfico também nos possibilitaram verificar que muitos alunos não identificavam as variáveis
visuais pertinentes que relacionavam registro algébrico e gráfico; mostraram não ter nitidez sobre
a representação de um par ordenado no plano bidimensional ao escrevê-lo no registro algébrico na
representação simbólica; e não possuíam clareza quanto ao conceito de proporcionalidade e,
consequentemente, de combinação linear ao analisarem os coeficientes das incógnitas e dos
termos independentes por meio do registro algébrico na representação tabular. Além disso, foi, a
partir da argumentação no registro da língua natural, que confirmamos que os alunos não
identificavam as variáveis visuais pertinentes e também não possuíam clareza quanto à
nomenclatura a ser adotada para se referirem aos objetos que compõem o registro gráfico. Desse
modo, almejamos que nosso trabalho tenha contribuído para que mais pessoas tenham uma visão
de como ocorre o estudo de sistemas lineares e como a mobilização de diferentes sistemas
representacionais promove a identificação de aspectos inerentes a esse objeto matemático.
|
Page generated in 0.1584 seconds