Spelling suggestions: "subject:"metaheuristic"" "subject:"heuristic""
11 |
Hyperheuristiques pour des problèmes d’optimisation en logistique / Hyperheuristics in LogisticsDanach, Kassem 21 December 2016 (has links)
Le succès dans l'utilisation de méthodes exactes d’optimisation combinatoire pour des problèmes de grande taille est encore limité à certains problèmes ou à des classes spécifiques d'instances de problèmes. Une approche alternative consiste soit à utiliser des métaheuristiques ou des matheuristiques qui reposent en partie sur des méthodes exactes. Dans le contexte de l'optimisation combinatoire, nous nous intéressons des heuristiques permettant de choisir les heuristiques appliquées au problème traité. Dans cette thèse, nous nous concentrons sur l'optimisation à l’aide d’hyperheuristiques pour des problèmes logistiques. Nous proposons un cadre hyperheuristique qui effectue une recherche dans l'espace des algorithmes heuristiques et apprend comment changer l'heuristique courante systématiquement tout au long du processus de telle sorte qu'une bonne séquence d'heuristiques permet d’obtenir des solutions de haute qualité. Nous étudions plus particulièrement deux problèmes en logistique pour lesquels nous proposons des HHs: un problème de planification d’interventions sur des puits de forage et un problème conjoint de localisation de hubs et de routage. Ensuite, nous comparons les performances de plusieurs HH décrites dans la littérature pour le second problème abordé reposant sur différentes méthodes de sélection heuristique telles que la sélection aléatoire, la fonction de choix, une approche de Q-Learning et un algorithme de colonie de fourmis. Les résultats numériques prouvent l'efficacité de HHs pour les deux problèmes traités, et la pertinence d'inclure l'information venant d’une relaxation de Lagrangienne pour le deuxième problème. / Success in using exact methods for large scale combinatorial optimization is still limited to certain problems or to specific classes of instances of problems. The alternative way is either using metaheuristics or matheuristics that rely on exact methods in some ways. In the context of combinatorial optimization, we are interested in heuristics to choose heuristics invoked to solve the addressed problem. In this thesis, we focus on hyperheuristic optimization in logistic problems. We focus on proposing a hyperheuristic framework that carries out a search in the space of heuristic algorithms and learns how to change the incumbent heuristic in a systematic way along the process in such a way that a good sequence of heuristics produces high quality solutions. We propose HHs for two problems in logistics: the workover rig scheduling problem and the hub location routing problem. Then, we compare the performances of several HHs described in the literature for the latter problem, which embed different heuristic selection methods such as a random selection, a choice function, a Q-Learning approach, and an ant colony based algorithm. The computational results prove the efficiency of HHs for the two problems in hand, and the relevance of including Lagrangian relaxation information for the second problem.
|
12 |
Workforce scheduling and job rotation by considering ergonomic factors (Presentation of the Sequencing Generalized Assignment Problem) : application to production and home healthcare systems / Planification du personnel et rotation des tâches en considérant des facteurs ergonomiques : application aux systèmes de production et soins à domicileMoussavi, Seyed Esmaeil 30 August 2018 (has links)
Cette thèse porte sur la planification du personnel en accordant une attention particulière à l'aspect humain et aux facteurs ergonomiques dans le domaine de la production. Un certain nombre de modèles mathématiques sont présentés pour formuler les problèmes d'ordonnancement et de planification du personnel étudié. Concernant les modèles de planification, la productivité du système de fabrication et le bien-être des travailleurs sont ciblés. De cette manière, une méthode d'affectation des travailleurs est présentée pour réduire le temps de production et une méthode d'ordonnancement pour la rotation des tâches est présentée afin d’équilibrer la charge de travail des opérateurs. À cet effet, une analyse ergonomique est effectuée sur les postes de travail du système de production étudié. Cette analyse aboutit à l'évaluation des postes du travail suivant la convention dite des feux de circulation, c'est-à-dire que les postes sont classés dans les niveaux de charge faible, moyen et élevé qui sont représentés respectivement par les couleurs verte, jaune et rouge. Une approche mathématique est développée pour convertir ces résultats en valeurs numériques, car les paramètres quantitatifs sont plus applicables pour l'optimisation de la planification. Une programmation multi-objectifs est proposée pour optimiser les deux objectifs mentionnés du problème d'ordonnancement de tournée du personnel étudié. Les méthodes d'agrégation linéaire et de ε-contrainte sont appliquées pour résoudre ce modèle d'optimisation. En outre, cette thèse présente une nouvelle variante du problème d'affectation appelé problème d'affectation généralisée par séquence qui est défini pour la planification du personnel dans un système combiné constitué des postes de travail en série et en parallèle. Il est prouvé que ce problème d'optimisation combinatoire est NP-difficile et les méthodes exactes ne sont pas capables de résoudre les instances de grande taille. Ainsi, trois méthodes approchées composées de deux approches matheuristiques et une heuristique hybride sont développées pour résoudre ce problème. Les méthodes matheuristiques sont basées sur la décomposition de la formulation pour simplifier le modèle principal en deux ou plusieurs modèles plus petits. La troisième méthode est une heuristique gloutonne combinée à une recherche locale. En outre, dans la dernière étape de cette thèse, la planification des ressources humaines pour un système de soins à domicile est formulée mathématiquement. Selon la structure du système, une intégration des problèmes d'affectation et de tournées de véhicules est présentée. Enfin, une approche matheuristique en trois étapes est proposée pour résoudre ce problème d'optimisation combinatoire. / This thesis concerns the human resource planning by paying a special attention to the human aspect and ergonomic factors in the manufacturing domain. A number of mathematical models are presented to formulate the studied workforce scheduling and planning problems. In the planning models, the productivity of the manufacturing system and the well-being of the workers are targeted. In this way, a worker assignment approach is presented to reduce the production time and a job rotation scheduling approach is presented to balance the workloads on the operators. For this purpose, an ergonomic analysis is carried out on the jobs of the studied production system. This analysis results in the traffic light evaluation for the jobs, i.e., the jobs are categorized into the low, medium and high workload levels which are presented respectively by the green, yellow and red colors. A mathematical approach is developed to convert these outputs to the numerical values, because the quantitative parameters are more applicable for the optimization of the planning. A multi-objective programming is proposed to optimize two mentioned objectives of the studied workforce scheduling problem. Both linear aggregation and epsilon-constraint methods are applied to solve this optimization model. Furthermore, this thesis presents a novel variant of the assignment problem called sequencing generalized assignment problem which is defined for workforce scheduling in a combined system consisting of the jobs in series and in parallel. It is proved that this combinatorial optimization problem is NP-hard and the exact methods are not able to solve the large-scale instances. Hence, three approximate methods consisting of two matheuristic and a hybrid heuristic approaches are developed to solve it. The matheuristic methods are based on the decomposition of the formulation to break down and simplify the main model into two or more smaller models. The third method is a greedy heuristic combined with a local search. The efficiency of the three mentioned methods is evaluated by various instances of different sizes. Moreover, in the last step of this thesis, the human resource planning for a home healthcare system is formulated mathematically. According to the structure of the system, an integration of the worker assignment and vehicle routing problems is presented. Finally, a three-steps matheuristic approach is proposed to solve this combinatorial optimization problem.
|
13 |
Matheuristic algorithms for minimizing total tardiness in flow shop scheduling problems / Algorithmes métaheuristiques pour minimiser la somme des retards des problèmes d'ordonnancement de type flowshopTa, Quang-Chieu 12 February 2015 (has links)
Nous considérons dans cette thèse un problème d’ordonnancement de flow-shop de permutation où un ensemble de travaux doit être ordonnancé sur un ensemble de machines. Les travaux doivent être ordonnancés sur les machines dans le même ordre. L’objectif est de minimiser le retard total. Nous proposons des algorithmes heuristiques et des nouvelles matheuristiques pour ce problème. Les matheuristiques sont un nouveau type d’algorithmes approchés qui ont été proposés pour résoudre des problèmes d’optimisation combinatoire. Les méthodes importent de la résolution exacte au sein des approches (méta) heuristiques. Ce type de méthode de résolution a reçu un grand intérêt en raison de leurs très bonnes performances pour résoudre des problèmes difficiles. Nous présentons d’abord les concepts de base d’un problème d’ordonnancement. Nous donnons aussi une brève introduction à la théorie de l’ordonnancement et nous présentons un panel de méthodes de résolution. Enfin, nous considérons un problème où un flow shop de permutation à m-machine et un problème de tournées de véhicules sont intégrés, avec pour objectif la minimisation de la somme des retards. Nous proposons un codage direct d’une solution et une méthode de voisinage. Les résultats montrent que l’algorithme Tabou améliore grandement la solution initiale donnée par EDD et où chaque voyage ne délivre qu’un travail. / We consider in this thesis a permutation flow shop scheduling problem where a set of jobs have to be scheduled on a set of machines. The jobs have to be processed on the machines in the same order. The objective is to minimize the total tardiness. We propose heuristic algorithms and many new matheuristic algorithms for this problem. The matheuristic methods are a new type of approximated algorithms that have been proposed for solving combinatorial optimization problems. These methods embed exact resolution into (meta)heuristic approaches. This type of resolution method has received a great interest because of their very good performances for solving some difficult problems. We present the basic concepts and components of a scheduling problem and the aspects related to these components. We also give a brief introduction to the theory of scheduling and present an overview of resolution methods. Finally, we consider a problem where m-machine permutation flow shop scheduling problem and a vehicle routing problem are integrated and the objective is to minimize the total tardiness. We introduce a direct coding for a complete solution and a Tabu search for finding a sequence and trips. The results show that the TS greatly improves the initial solution given by EDD heuristic where each trip serves only one job at a time.
|
14 |
Une matheuristique unifiée pour résoudre des problèmes de tournées de véhicules riches / Unified matheuristic for solving rich vehicle routing problemsLahyani, Rahma 13 June 2014 (has links)
L’objectif de cette thèse est de développer un cadre méthodologique pour les problèmes de tournées de véhicules riches (RVRPs). Nous présentons d’abord une taxonomie et une définition élaborée des RVRPs basée sur une analyse typologique réalisée en fonction de deux critères discriminatoires. Dans cette thèse, nous nous intéressons à la résolution du problème de tournées de véhicules multi-dépôt multi-compartiment multi-produits avec fenêtres de temps (MDMCMCm-VRPTW). Nous proposons une heuristique de génération de colonnes unifiée qui inclut une matheuristique de type VNS. La matheuristique combine plusieurs heuristiques de routage de type destruction et insertion ainsi que des procédures efficaces de contrôle de réalisabilité des contraintes afin de résoudre le MDMCMCm-VRPTW pour un seul véhicule. Deux voisinages de chargement, basés sur la résolution de programmes mathématiques sont proposées. Des études expérimentales approfondies sont conduites sur un ensemble de 191 instances pour des VRPs moins complexes. Les expérimentations valident la compétitivité de la matheuristique unifiée. Une analyse de sensibilité révèle l’importance de certains choix algorithmiques et des voisinages de chargement pour parvenir à des solutions de très bonne qualité. La matheuristique basée sur la méthode de VNS est intégrée dans l’heuristique de génération de colonnes pour résoudre le MDMCMCm-VRPTW. Nous proposons une méthode exacte de post-traitement capable d’optimiser l’affectation des clients aux tournées de véhicules. Enfin, nous résolvons un RVRP qui survient dans le processus de collecte de l’huile d’olive en Tunisie à l’aide d’un algorithme exact de type branch-and-cut / The purpose of this thesis is to develop a solution framework for Rich Vehicle Routing Problems (RVRPs). We first provide a comprehensive survey of the RVRP literature as well as a taxonomy. Selected papers addressing various variants are classified according to the proposed taxonomy. A cluster analysis based on two discriminating criteria is performed and leads to define RVRPs. In this thesis we are interested in solving a multi-depot multi-compartment multi-commodity vehicle routing problem with time windows (MDMCMCm-VRPTW). We propose a unified column generation heuristic cooperating with a variable neighborhood search (VNS) matheuristic. The VNS combines several removal and insertion routing heuristics as well as computationally efficient constraint checking. Two loading neighborhoods based on the solution of mathematical programs are proposed to intensify the search. On a set of 191 instances of less complex routing problems, the unified matheuristic turns to be competitive. A sensitivity analysis, performed on more complex generated instances reveals the importance of some algorithmic features and of loading neighborhoods for reaching high quality solutions. The VNS based matheuristic is embedded in a column generation heuristic to solve the MDMCMCm-VRPTW. We propose an exact post-processing method to optimize the assignment ofcustomers to vehicle routes. Last, we introduce, model and solve to optimality a RVRP arising in the olive oil collection process in Tunisia. We propose an exact branch-and-cut algorithm to solve the problem. We evaluate the performance of the algorithm on real data sets under different transportation scenarios
|
15 |
Electric Vehicle Routing Problems : models and solution approaches / Problèmes de tournées de véhicules électriques : modèles et méthodes de résolutionMontoya, Jose-Alejandro 09 December 2016 (has links)
Étant donné leur faible impact environnemental, l’utilisation des véhicules électriques dans les activités de service a beaucoup augmenté depuis quelques années. Cependant, leur déploiement est freiné par des contraintes techniques telles qu’une autonomie limitée et de longs temps de charge des batteries. La prise en compte de ces contraintes a mené à l’apparition de nouveaux problèmes de tournées de véhicules pour lesquels, en plus d’organiser les tournées,il faut décider où et de combien charger les batteries. Dans cette thèse nous nous intéressons à ces problèmes au travers de quatre études. La première concerne le développement d’une métaheuristique en deux phases simple mais performante pour résoudre un problème particulier appelé "Green VRP”. Dans la seconde, nous nous concentrons sur la modélisation d’un aspect essentiel dans ces problèmes : le processus de chargement des batteries. Nous étudions différentes stratégies pour modéliser ce processus et montrons l’importance de considérer la nature non linéaire des fonctions de chargement. Dans la troisième étude nous proposons une recherche locale itérative pour résoudre des problèmes avec des fonctions de chargement non linéaires. Nous introduisons un voisinage dédié aux décisions de chargement basé sur un nouveau problème de chargement sur une tournée fixée. Dans la dernière étude, nous traitons un problème réel de tournées de techniciens avec des véhicules classiques et électriques. Ce problème est résolu par une métaheuristique qui décompose le problème en plusieurs sous-problèmes plus simples résolus en parallèle, puis qui assemble des parties des solutions trouvées pour construire la solution finale. / Electric vehicles (evs) are one of the most promising technologies to reduce the greenhouse gas emissions. For this reason, the use of evs in service operations has dramatically increased in recent years. Despite their environmental benefits, evs still face technical constraints such as short autonomy and long charging times. Taking into account these constraints when planning ev operations leads to a new breed of vehicle routing problems (vrps), known as electricVrps (evrps). In addition, to the standard routing decisions, evrps are concerned with charging decisions: where and how much to charge. In this ph. D thesis, we address evrps through 4 different studies. In the first study, we tackle the green vehicle routing problem. To solve the problem, we propose a simple, yet effective, two-phase matheuristic. In the second study, we focus a key modelling aspects in evrps: the battery charging process. We study different strategies to model this process and show the importance of considering the nonlinear nature of the battery charging functions. InThe third study, we propose an iterated local search to tackle evrp with non-linear charging functions. We introduce a particular local search operator for the charging decisions based on a new fixedroute charging problem. The fourth and last study considers a real technician routing problem with conventional and electric vehicles (trp-cev). To tackle this problem, we propose a parallel matheuristic that decomposes the problem into a set of easier-to-solve subproblemsThat are solved in parallel processors. Then the approach uses parts of the solutions found to the subproblems to assemble final solution to the trp-cev.
|
16 |
Contributions théoriques et pratiques pour la recherche dispersée, recherche à voisinage variable et matheuristique pour les programmes en nombres entiers mixtes / Theoretical and practical contributions on scatter search, variable neighborhood search and matheuristics for 0-1 mixed integer programsTodosijević, Raca 22 June 2015 (has links)
Cette thèse comporte des résultats théoriques et pratiques sur deux métaheuristiques, la Recherche Dispersée et la Recherche Voisinage variable (RVV), ainsi que sur des Matheuristiques. Au niveau théorique, la contribution principale de cette thèse est la proposition d’un algorithme de recherche dispersée avec l’arrondi directionnel convergent pour les programmes en nombres entiers mixtes (0-1 MIP), avec une preuve de cette convergence en un nombre fini d’itérations. En se basant sur cet algorithme convergeant, deux implémentations et plusieurs heuristiques sont proposées et testées sur des instances de 0-1 MIP. Les versions testées reposent sur des implémentations non optimisées pour mettre en évidence la puissance des approches dans une forme simplifiée. Nos résultats démontrent l’efficacité de ces approches initiales, ce qui les rend attractives lorsque des solutions de très haute qualité sont recherchées avec un investissement approprié en termes d’effort de calcul. Cette thèse inclut également quelques nouvelles variantes de la métaheuristique Recherche Voisinage Variable telles qu’une recherche voisinage variable deux niveaux, une recherche voisinage variable imbriquée, une descente voisinage variable cyclique et une heuristique de plongée voisinage variable. En outre, plusieurs implémentations efficaces de ces algorithmes basés sur la recherche voisinage variable ont été appliquées avec succès à des problèmes NP-Difficiles apparaissant en transport, logistique, production d’énergie, ordonnancement, et segmentation. Les heuristiques proposées se sont avérées être les nouvelles heuristiques de référence sur tous les problèmes considérés. La dernière contribution de cette thèse repose sur la proposition de plusieurs matheuristiques pour résoudre le problème de Conception de Réseau Multi-flots avec Coût fixe (CRMC). Les performances de ces matheuristiques ont été évaluées sur un ensemble d’instances de référence du CRMC. Les résultats obtenus démontrent la compétitivité des approches proposées par rapport aux approches existantes de la littérature. / This thesis consists of results obtained studying Scatter Search, Variable Neighbourhood Search (VNS), and Matheuristics in both theoretical and practical context. Regarding theoretical results, one of the main contribution of this thesis is a convergent scatter search with directional rounding algorithm for 0-1 Mixed Integer Programs (MIP) with the proof of its finite convergence. Besides this, a convergent scatter search algorithm is accompanied by two variants of its implementation. Additionally, several scatter search based heuristics, stemming from a convergent scatter search algorithm have been proposed and tested on some instances of 0-1 MIP. The versions of the methods tested are first stage implementations to establish the power of the methods in a simplified form. Our findings demonstrate the efficacy of these first stage methods, which makes them attractive for use in situations where very high quality solutions are sought with an efficient investment of computational effort.This thesis also includes new variants of Variable Neighborhood Search metaheuristic such as a two-level variable neighborhood search, a nested variable neighborhood search, a cyclic variable neighborhood descent and a variable neighborhood diving. Additionally, several efficient implementation of those variable neighborhood search algorithms have been successfully applied for solving NP-Hard problems appearing in transportation, logistics, power generation, scheduling and clustering. On all tested problems, the proposed VNS heuristics turned out to be a new state-of-the art heuristics. The last contribution of this thesis consists of proposing several matheuristics for solving Fixed-Charge Multicommodity Network Design (MCND) problem. The performances of these matheuristics have been disclosed on benchmark instances for MCND. The obtained results demonstrate the competitiveness of the proposed matheuristics with other existing approaches in the literature.
|
17 |
When operations research meets structural pattern recognition : on the solution of error-tolerant graph matching problems / Lorsque la recherche opérationnelle croise la reconnaissance d'objets structurels : la résolution des problèmes d'appariement de graphes tolérants à l'erreurDarwiche, Mostafa 05 December 2018 (has links)
Cette thèse se situe à l’intersection de deux domaines de recherche scientifique la Reconnaissance d’Objets Structurels (ROS) et la Recherche Opérationnelle (RO). Le premier consiste à rendre la machine plus intelligente et à reconnaître les objets, en particulier ceux basés sur les graphes. Alors que le second se focalise sur la résolution de problèmes d’optimisation combinatoire difficiles. L’idée principale de cette thèse est de combiner les connaissances de ces deux domaines. Parmi les problèmes difficiles existants en ROS, le problème de la distance d’édition entre graphes (DEG) a été sélectionné comme le cœur de ce travail. Les contributions portent sur la conception de méthodes adoptées du domaine RO pour la résolution du problème de DEG. Explicitement, des nouveaux modèles linéaires en nombre entiers et des matheuristiques ont été développé à cet effet et de très bons résultats ont été obtenus par rapport à des approches existantes. / This thesis is focused on Graph Matching (GM) problems and in particular the Graph Edit Distance (GED) problems. There is a growing interest in these problems due to their numerous applications in different research domains, e.g. biology, chemistry, computer vision, etc. However, these problems are known to be complex and hard to solve, as the GED is a NP-hard problem. The main objectives sought in this thesis, are to develop methods for solving GED problems to optimality and/or heuristically. Operations Research (OR) field offers a wide range of exact and heuristic algorithms that have accomplished very good results when solving optimization problems. So, basically all the contributions presented in thesis are methods inspired from OR field. The exact methods are designed based on deep analysis and understanding of the problem, and are presented as Mixed Integer Linear Program (MILP) formulations. The proposed heuristic approaches are adapted versions of existing MILP-based heuristics (also known as matheuristics), by considering problem-dependent information to improve their performances and accuracy.
|
18 |
Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial EnterprisesGuzmán Ortiz, Brunnel Eduardo 10 October 2022 (has links)
Tesis por compendio / [ES] La optimización en las empresas manufactureras es especialmente importante, debido a las grandes inversiones que realizan, ya que a veces estas inversiones no obtienen el rendimiento esperado porque los márgenes de beneficio de los productos son muy ajustados. Por ello, las empresas tratan de maximizar el uso de los recursos productivos y financieros minimizando el tiempo perdido y, al mismo tiempo, mejorando los flujos de los procesos y satisfaciendo las necesidades del mercado.
El proceso de planificación es una actividad crítica para las empresas. Esta tarea implica grandes retos debido a los cambios del mercado, las alteraciones en los procesos de producción dentro de la empresa y en la cadena de suministro, y los cambios en la legislación, entre otros.
La planificación del aprovisionamiento, la producción y la distribución desempeña un papel fundamental en el rendimiento de las empresas manufactureras, ya que una planificación ineficaz de los proveedores, los procesos de producción y los sistemas de distribución contribuye a aumentar los costes de los productos, a alargar los plazos de entrega y a reducir los beneficios. La planificación eficaz es un proceso complejo que abarca una amplia gama de actividades para garantizar que los equipos, los materiales y los recursos humanos estén disponibles en el momento y el lugar adecuados.
Motivados por la complejidad de la planificación en las empresas manufactureras, esta tesis estudia y desarrolla herramientas cuantitativas para ayudar a los planificadores en los procesos de la planificación del aprovisionamiento, producción y distribución. Desde esta perspectiva, se proponen modelos realistas y métodos eficientes para apoyar la toma de decisiones en las empresas industriales, principalmente en las pequeñas y medianas empresas (PYMES).
Las aportaciones de esta tesis suponen un avance científico basado en una exhaustiva revisión bibliográfica sobre la planificación del aprovisionamiento, la producción y la distribución que ayuda a comprender los principales modelos y algoritmos utilizados para resolver estos planes, y pone en relieve las tendencias y las futuras direcciones de investigación. También proporciona un marco holístico para caracterizar los modelos y algoritmos centrándose en la planificación de la producción, la programación y la secuenciación. Esta tesis también propone una herramienta de apoyo a la decisión para seleccionar un algoritmo o método de solución para resolver problemas concretos de la planificación del aprovisionamiento, producción y distribución en función de su complejidad, lo que permite a los planificadores no duplicar esfuerzos de modelización o programación de técnicas de solución. Por último, se desarrollan nuevos modelos matemáticos y enfoques de solución de última generación, como los algoritmos matheurísticos, que combinan la programación matemática y las técnicas metaheurísticas.
Los nuevos modelos y algoritmos comprenden mejoras en términos de rendimiento computacional, e incluyen características realistas de los problemas del mundo real a los que se enfrentan las empresas de fabricación. Los modelos matemáticos han sido validados con un caso de una importante empresa del sector de la automoción en España, lo que ha permitido evaluar la relevancia práctica de estos novedosos modelos utilizando instancias de gran tamaño, similares a las existentes en la empresa objeto de estudio. Además, los algoritmos matheurísticos han sido probados utilizando herramientas libres y de código abierto. Esto también contribuye a la práctica de la investigación operativa, y proporciona una visión de cómo desplegar estos métodos de solución y el tiempo de cálculo y rendimiento de la brecha que se puede obtener mediante el uso de software libre o de código abierto. / [CA] L'optimització a les empreses manufactureres és especialment important, a causa de les grans inversions que realitzen, ja que de vegades aquestes inversions no obtenen el rendiment esperat perquè els marges de benefici dels productes són molt ajustats. Per això, les empreses intenten maximitzar l'ús dels recursos productius i financers minimitzant el temps perdut i, alhora, millorant els fluxos dels processos i satisfent les necessitats del mercat.
El procés de planificació és una activitat crítica per a les empreses. Aquesta tasca implica grans reptes a causa dels canvis del mercat, les alteracions en els processos de producció dins de l'empresa i la cadena de subministrament, i els canvis en la legislació, entre altres.
La planificació de l'aprovisionament, la producció i la distribució té un paper fonamental en el rendiment de les empreses manufactureres, ja que una planificació ineficaç dels proveïdors, els processos de producció i els sistemes de distribució contribueix a augmentar els costos dels productes, allargar els terminis de lliurament i reduir els beneficis. La planificació eficaç és un procés complex que abasta una àmplia gamma d'activitats per garantir que els equips, els materials i els recursos humans estiguen disponibles al moment i al lloc adequats.
Motivats per la complexitat de la planificació a les empreses manufactureres, aquesta tesi estudia i desenvolupa eines quantitatives per ajudar als planificadors en els processos de la planificació de l'aprovisionament, producció i distribució. Des d'aquesta perspectiva, es proposen models realistes i mètodes eficients per donar suport a la presa de decisions a les empreses industrials, principalment a les petites i mitjanes empreses (PIMES).
Les aportacions d'aquesta tesi suposen un avenç científic basat en una exhaustiva revisió bibliogràfica sobre la planificació de l'aprovisionament, la producció i la distribució que ajuda a comprendre els principals models i algorismes utilitzats per resoldre aquests plans, i posa de relleu les tendències i les futures direccions de recerca. També proporciona un marc holístic per caracteritzar els models i algorismes centrant-se en la planificació de la producció, la programació i la seqüenciació. Aquesta tesi també proposa una eina de suport a la decisió per seleccionar un algorisme o mètode de solució per resoldre problemes concrets de la planificació de l'aprovisionament, producció i distribució en funció de la seua complexitat, cosa que permet als planificadors no duplicar esforços de modelització o programació de tècniques de solució. Finalment, es desenvolupen nous models matemàtics i enfocaments de solució d'última generació, com ara els algoritmes matheurístics, que combinen la programació matemàtica i les tècniques metaheurístiques.
Els nous models i algoritmes comprenen millores en termes de rendiment computacional, i inclouen característiques realistes dels problemes del món real a què s'enfronten les empreses de fabricació. Els models matemàtics han estat validats amb un cas d'una important empresa del sector de l'automoció a Espanya, cosa que ha permés avaluar la rellevància pràctica d'aquests nous models utilitzant instàncies grans, similars a les existents a l'empresa objecte d'estudi. A més, els algorismes matheurístics han estat provats utilitzant eines lliures i de codi obert. Això també contribueix a la pràctica de la investigació operativa, i proporciona una visió de com desplegar aquests mètodes de solució i el temps de càlcul i rendiment de la bretxa que es pot obtindre mitjançant l'ús de programari lliure o de codi obert. / [EN] Optimisation in manufacturing companies is especially important, due to the large investments they make, as sometimes these investments do not obtain the expected return because the profit margins of products are very tight. Therefore, companies seek to maximise the use of productive and financial resources by minimising lost time and, at the same time, improving process flows while meeting market needs.
The planning process is a critical activity for companies. This task involves great challenges due to market changes, alterations in production processes within the company and in the supply chain, and changes in legislation, among others.
Planning of replenishment, production and distribution plays a critical role in the performance of manufacturing companies because ineffective planning of suppliers, production processes and distribution systems contributes to higher product costs, longer lead times and less profits. Effective planning is a complex process that encompasses a wide range of activities to ensure that equipment, materials and human resources are available in the right time and the right place.
Motivated by the complexity of planning in manufacturing companies, this thesis studies and develops quantitative tools to help planners in the replenishment, production and delivery planning processes. From this perspective, realistic models and efficient methods are proposed to support decision making in industrial companies, mainly in small- and medium-sized enterprises (SMEs).
The contributions of this thesis represent a scientific breakthrough based on a comprehensive literature review about replenishment, production and distribution planning that helps to understand the main models and algorithms used to solve these plans, and highlights trends and future research directions. It also provides a holistic framework to characterise models and algorithms by focusing on production planning, scheduling and sequencing. This thesis also proposes a decision support tool for selecting an algorithm or solution method to solve concrete replenishment, production and distribution planning problems according to their complexity, which allows planners to not duplicate efforts modelling or programming solution techniques. Finally, new state-of-the-art mathematical models and solution approaches are developed, such as matheuristic algorithms, which combine mathematical programming and metaheuristic techniques.
The new models and algorithms comprise improvements in computational performance terms, and include realistic features of real-world problems faced by manufacturing companies. The mathematical models have been validated with a case of an important company in the automotive sector in Spain, which allowed to evaluate the practical relevance of these novel models using large instances, similarly to those existing in the company under study. In addition, the matheuristic algorithms have been tested using free and open-source tools. This also helps to contribute to the practice of operations research, and provides insight into how to deploy these solution methods and the computational time and gap performance that can be obtained by using free or open-source software. / This work would not have been possible without the following funding sources: Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for hiring predoctoral research staff with Grant (ACIF/2018/170) and the European Social Fund with the Grant Operational Programme of FSE 2014-2020. Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for predoctoral contract students to stay in research centers outside the research centers outside the Valencian Community (BEFPI/2021/040) and the European Social Fund. / Guzmán Ortiz, BE. (2022). Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial Enterprises [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/187461 / Compendio
|
Page generated in 0.0824 seconds