• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Packing Unit Disks

Lafreniere, Benjamin J. January 2008 (has links)
Given a set of unit disks in the plane with union area A, what fraction of A can be covered by selecting a pairwise disjoint subset of the disks? Richard Rado conjectured 1/4 and proved 1/4.41. In this thesis, we consider a variant of this problem where the disjointness constraint is relaxed: selected disks must be k-colourable with disks of the same colour pairwise-disjoint. Rado's problem is then the case where k = 1, and we focus our investigations on what can be proven for k > 1. Motivated by the problem of channel-assignment for Wi-Fi wireless access points, in which the use of 3 or fewer channels is a standard practice, we show that for k = 3 we can cover at least 1/2.09 and for k = 2 we can cover at least 1/2.82. We present a randomized algorithm to select and colour a subset of n disks to achieve these bounds in O(n) expected time. To achieve the weaker bounds of 1/2.77 for k = 3 and 1/3.37 for k = 2 we present a deterministic O(n^2) time algorithm. We also look at what bounds can be proven for arbitrary k, presenting two different methods of deriving bounds for any given k and comparing their performance. One of our methods is an extension of the method used to prove bounds for k = 2 and k = 3 above, while the other method takes a novel approach. Rado's proof is constructive, and uses a regular lattice positioned over the given set of disks to guide disk selection. Our proofs are also constructive and extend this idea: we use a k-coloured regular lattice to guide both disk selection and colouring. The complexity of implementing many of the constructions used in our proofs is dominated by a lattice positioning step. As such, we discuss the algorithmic issues involved in positioning lattices as required by each of our proofs. In particular, we show that a required lattice positioning step used in the deterministic O(n^2) algorithm mentioned above is 3SUM-hard, providing evidence that this algorithm is optimal among algorithms employing such a lattice positioning approach. We also present evidence that a similar lattice positioning step used in the constructions for our better bounds for k = 2 and k = 3 may not have an efficient exact implementation.
2

Packing Unit Disks

Lafreniere, Benjamin J. January 2008 (has links)
Given a set of unit disks in the plane with union area A, what fraction of A can be covered by selecting a pairwise disjoint subset of the disks? Richard Rado conjectured 1/4 and proved 1/4.41. In this thesis, we consider a variant of this problem where the disjointness constraint is relaxed: selected disks must be k-colourable with disks of the same colour pairwise-disjoint. Rado's problem is then the case where k = 1, and we focus our investigations on what can be proven for k > 1. Motivated by the problem of channel-assignment for Wi-Fi wireless access points, in which the use of 3 or fewer channels is a standard practice, we show that for k = 3 we can cover at least 1/2.09 and for k = 2 we can cover at least 1/2.82. We present a randomized algorithm to select and colour a subset of n disks to achieve these bounds in O(n) expected time. To achieve the weaker bounds of 1/2.77 for k = 3 and 1/3.37 for k = 2 we present a deterministic O(n^2) time algorithm. We also look at what bounds can be proven for arbitrary k, presenting two different methods of deriving bounds for any given k and comparing their performance. One of our methods is an extension of the method used to prove bounds for k = 2 and k = 3 above, while the other method takes a novel approach. Rado's proof is constructive, and uses a regular lattice positioned over the given set of disks to guide disk selection. Our proofs are also constructive and extend this idea: we use a k-coloured regular lattice to guide both disk selection and colouring. The complexity of implementing many of the constructions used in our proofs is dominated by a lattice positioning step. As such, we discuss the algorithmic issues involved in positioning lattices as required by each of our proofs. In particular, we show that a required lattice positioning step used in the deterministic O(n^2) algorithm mentioned above is 3SUM-hard, providing evidence that this algorithm is optimal among algorithms employing such a lattice positioning approach. We also present evidence that a similar lattice positioning step used in the constructions for our better bounds for k = 2 and k = 3 may not have an efficient exact implementation.
3

Hybrid metaheuristic algorithms for sum coloring and bandwidth coloring / Métaheuristiques hybrides pour la somme coloration et la coloration de bande passante

Jin, Yan 29 May 2015 (has links)
Le problème de somme coloration minimum (MSCP) et le problème de coloration de bande passante (BCP) sont deux généralisations importantes du problème de coloration des sommets classique avec de nombreuses applications dans divers domaines, y compris la conception de circuits imprimés, la planication, l’allocation de ressource, l’affectation de fréquence dans les réseaux mobiles, etc. Les problèmes MSCP et BCP étant NP-difficiles, les heuristiques et métaheuristiques sont souvent utilisées en pratique pour obtenir des solutions de bonne qualité en un temps de calcul acceptable. Cette thèse est consacrée à des métaheuristiques hybrides pour la résolution efcace des problèmes MSCP et BCP. Pour le problème MSCP, nous présentons deux algorithmes mémétiques qui combinent l’évolution d’une population d’individus avec de la recherche locale. Pour le problème BCP, nous proposons un algorithme hybride à base d’apprentissage faisant coopérer une méthode de construction “informée” avec une procédure de recherche locale. Les algorithmes développés sont évalués sur des instances biens connues et se révèlent très compétitifs par rapport à l’état de l’art. Les principaux composants des algorithmes que nous proposons sont également analysés. / The minimum sum coloring problem (MSCP) and the bandwidth coloring problem (BCP) are two important generalizations of the classical vertex coloring problem with numerous applications in diverse domains, including VLSI design, scheduling, resource allocation and frequency assignment in mobile networks, etc. Since the MSCP and BCP are NP-hard problems, heuristics and metaheuristics are practical solution methods to obtain high quality solutions in an acceptable computing time. This thesis is dedicated to developing effective hybrid metaheuristic algorithms for the MSCP and BCP. For the MSCP, we present two memetic algorithms which combine population-based evolutionary search and local search. An effective algorithm for maximum independent set is devised for generating initial solutions. For the BCP, we propose a learning-based hybrid search algorithm which follows a cooperative framework between an informed construction procedure and a local search heuristic. The proposed algorithms are evaluated on well-known benchmark instances and show highly competitive performances compared to the current state-of-the-art algorithms from the literature. Furthermore, the key issues of these algorithms are investigated and analyzed.
4

Stabilité et coloration des graphes sans P5 / Independent sets and coloring in P5-free graphs

Morel, Gregory 30 September 2011 (has links)
La classe des graphes sans P5, c'est-à-dire des graphes ne contenant pas de chaîne induite à cinq sommets, est d'un intérêt particulier en théorie des graphes. Il s'agit en effet de la plus petite classe définie par un seul sous-graphe connexe interdit pour laquelle on ignore encore s'il existe un algorithme polynomial permettant de résoudre le problème du stable maximum. Or ce problème, dont on sait qu'il est difficile en général, est d'une grande importance en pratique (problèmes de planification, d'allocation de registres dans un processeur, biologie moléculaire...). Dans cette thèse, nous commençons par dresser un état de l'art complet des méthodes utilisées pour résoudre le problème dans des sous-classes de graphes sans P5, puis nous étudions et résolvons ce problème dans une sous-classe particulière, la classe des graphes sans P5 3-colorables. Nous apportons également des solutions aux problèmes de la reconnaissance et de la coloration de ces graphes, chaque fois en temps linéaire. Enfin, nous définissons, caractérisons et sommes capables de reconnaître les graphes "chain-probe", qui sont les graphes auxquels il est possible de rajouter des arêtes entre certains sommets de sorte qu'ils soient bipartis et sans P5. Les problèmes de ce type proviennent de la génétique et ont également des applications en intelligence artificielle. / The class of P5-free graphs, namely the graphs without induced chains with five vertices, is of particular interest in graph theory. Indeed, it is the smallest class defined by only one forbidden connected induced subgraph for which the complexity of the Maximum Independent Set problem is unknown. This problem has many applications in planning, CPU register allocation, molecular biology... In this thesis, we first give a complete state of art of the methods used to solve the problem in P5-free graphs subclasses; then we study and solve this problem in a particular subclass, the class of 3-colorable P5-free graphs. We also bring solutions to recognition and coloring problems of these graphs, each time in linear time. Finally, we define, characterize, and are able to recognize "chain-probe" graphs, namely the graphs for which we can add edges between particular vertices such that the resulting graph is bipartite and P5-free. Problems of this type come from genetics and have application in I.A.
5

Algorithms for the Maximum Independent Set Problem

Lê, Ngoc C. 13 July 2015 (has links) (PDF)
This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of $S_{2;j;k}$-free graphs (thus generalizing the classical result for $S_{1;2;k}$-free graphs); + some subclasses of $tree_{k}$-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of $P_{7}$-free graphs and $S_{2;2;2}$-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of $S_{2;k;k}$-free graphs and a subclass of $S_{2;2;5}$-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for $P_{5}$-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for $P_{5}$-free graphs, to give polynomial solutions for some subclasses of $S_{2;2;2}$-free graphs and $tree_{k}$-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of $S_{i;j;k}$-free subcubic graphs.
6

Algorithms for the Maximum Independent Set Problem

Lê, Ngoc C. 18 February 2015 (has links)
This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of $S_{2;j;k}$-free graphs (thus generalizing the classical result for $S_{1;2;k}$-free graphs); + some subclasses of $tree_{k}$-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of $P_{7}$-free graphs and $S_{2;2;2}$-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of $S_{2;k;k}$-free graphs and a subclass of $S_{2;2;5}$-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for $P_{5}$-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for $P_{5}$-free graphs, to give polynomial solutions for some subclasses of $S_{2;2;2}$-free graphs and $tree_{k}$-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of $S_{i;j;k}$-free subcubic graphs.

Page generated in 0.0685 seconds