• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expressão dos transportadores de monocarboxilatos de equinos e cães / Expression of monocarboxylate transporters in equines and dogs

Feringer Júnior, Walter Heinz [UNESP] 13 November 2017 (has links)
Submitted by WALTER HEINZ FERINGER JUNIOR null (walterferinger@gmail.com) on 2018-03-22T22:47:37Z No. of bitstreams: 1 TESE_WALTER_HEINZ_FERINGER_JUNIOR.pdf: 2433033 bytes, checksum: 618fd780a0ad05e04e544c2769f96c3d (MD5) / Approved for entry into archive by Alexandra Maria Donadon Lusser Segali null (alexmar@fcav.unesp.br) on 2018-03-23T10:43:56Z (GMT) No. of bitstreams: 1 feringerjunior_wh_dr_jabo.pdf: 2433033 bytes, checksum: 618fd780a0ad05e04e544c2769f96c3d (MD5) / Made available in DSpace on 2018-03-23T10:43:56Z (GMT). No. of bitstreams: 1 feringerjunior_wh_dr_jabo.pdf: 2433033 bytes, checksum: 618fd780a0ad05e04e544c2769f96c3d (MD5) Previous issue date: 2017-11-13 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O principal mecanismo de transporte dos íons lactato e H+ em equinos e cães é o complexo transportador formado pelos transportadores de monocarboxilatos, isoformas 1 (MCT1) e 4 (MCT4) juntamente com a proteína auxiliar CD147. Objetivando identificar diferenças entre equinos com desempenho distinto, 16 equinos da raça Brasileiro de Hipismo (BH) foram distribuídos em dois grupos, desempenho inferior (DI, n=8) e desempenho superior (DS, n=8) que foram submetidos a teste de salto incrementai (TSI). Realizou-se biópsia do músculo Gluteus medius para tipificação e análise das expressões das isoformas MCT1, MCT4 e CD147. Amostras sanguíneas foram colhidas para avaliar as expressões MCT1 e CD147 das hemácias. Aplicaram-se testes de normalidade de Shapiro Wilk e homogeneidade de Levene. As medidas morfométricas foram submetidas ao teste de Tukey. Teste “t” de Student não pareado para a comparação das médias dos grupos DI e DS. Aplicou-se correlação de Spearman para as expressões dos transportadores. Para todas as análises utilizou-se p≤0,05. Não houve diferença entre os grupos quanto à frequência de cada tipo de fibra e constatou-se maior quantidade das fibras tipo I em relação às fibras IIA e IIX em todos os equinos avaliados. Não houve diferença entre os pesos moleculares e a expressão das proteínas MCT1, MCT4, e CD147 musculares ou sanguíneas. Houve correlações positivas entre MCT1 vs. CD147 e MCT4 vs. CD147 musculares dos grupos DI e DS. As correlações encontradas foram esperadas uma vez que as isoformas estudadas dependem intimamente da proteína auxiliar CD147 para o transporte. Os equinos BH não apresentaram diferenças nas expressões dos MCT1,4 e CD147, musculares ou sanguíneos, mesmo com níveis de condicionamento diferentes. Com o objetivo de investigar as concentrações de lactato plasmático e das hemácias e avaliar as expressões eritrocitáras do complexo transportador MT1/CD147, 6 cães da raça American Pitbull Terrier (APBT) foram submetidos ao teste de esforço incremental (TEI) em esteira. No final de cada incremento de velocidade foi coletado sangue da veia cefálica. Foram mensuradas concentrações de lactato sanguíneo (LS), plasmático (LP), pH e hematócrito (Ht). A concentração do lactato dentro das hemácias (LH) foi estimada e estabeleceu-se a relação LH:LP. As expressões sanguíneas do complexo MCT1/CD147 foram avaliadas por Western Bloting. Aplicou-se análise de variância de uma via seguido pelo teste de Dunn’s. Para pH e Ht aplicou-se teste t de student para amostras pareadas e a correlação de Pearson foi utilizada para MCT1 e CD147, estabeleceu-se nível de significância P≤0,05. LS, LP e LH e pH não apresentaram diferenças entre si, a relação LH:LP foi próxima de 1 com tendência de aumento. MCT1 e CD147 apresentaram 48 e 59 kDa de peso molecular e 1,27 e 1,05 de unidades ópticas arbitrárias (UOA). Não foram encontradas correlações entre MCT1 e CD147. A grande velocidade de transporte do MCT1/CD147 explica a relação LP:LH próxima de 1, esta velocidade e o mecanismo de arquejo podem explicar os valores de pH constantes. A raça APBT, quando submetidos à atividade física apresentaram tendência de aumento da relação LH:LP e expressam de maneira homogênea o complexo MCT1/CD147. / The central transport mechanism of lactate and H+ ions in horses and dogs is the carrier complex formed by the monocarboxylate, isoform 1 (MCT1) and 4 (MCT4) associated with the ancillary protein CD147. This study aimed to identify possible differences between horses with different performances levels, 16 horses of the Brazilian Sport Horse breed (BH) were distributed in two groups, inferior performance (IP, n = 8) and superior performance (SP, n = 8). A Gluteus medius muscle biopsy was performed for cellular typing and analysis of MCT1, MCT4, and CD147 muscle expressions. By jugular venipuncture, blood samples were collected to evaluate MCT1 and CD147 expressions in the red blood cells (RBC). Normality Shapiro Wilk test and homogeneity of Levene were applied. The morphometric measurements were submitted to the Tukey test, and not paired Student's t-test were applied to compare the mean of the IP and SP groups for all variables and was used Spearman's correlation for isoform expressions, for all analyzes, p≤0.05. There were no differences between the groups regarding the frequency of each type of fiber and a higher number of type I fibers were observed about the IIA and IIX fibers in all groups. There was no difference between molecular weights and expressions of MCT1, MCT4, and CD147 in muscle or blood. There were positive correlations between muscles MCT1 vs CD147 and MCT4 vs CD147 in both groups. The relationships found were expected since the MCT1 and 4 depended on the CD147 ancillary protein for correct functioning. The BH horses do not present differences in the muscle or RBC expressions of MCT1, 4 and CD147, even with different conditioning levels. To investigate plasma and erythrocyte lactate concentrations and to evaluate erythrocyte expression of the MT1/CD147 transporter complex, six dogs of the American Pit Bull Terrier breed (APBT) were submitted to a treadmill incremental effort test (IET). At the end of each increment of speed, blood was collected from the cephalic vein. Concentrations of blood (BL) and plasma lactate (PL), pH and hematocrit (Ht) were measured. The concentration of lactate inside the red blood cells (LC) was estimated and the LC: PL ratio was established, the blood expressions of the MCT1/CD147 transporter complex were evaluated by western blot. Data were submitted to the Shapiro-Wilks normality test, one-way ANOVA and Dunn's test. For pH and Ht, paired Student's t-test was applied, and Pearson's correlation was used for MCT1 and CD147 analysis, for all analyzes, p≤0.05. BL, PL, LC, pH showed no differences, the LC: PL ratio was close to 1 with an increasing tendency. MCT1 and CD147 presented 48 and 59 kDa of molecular weight and 1.27 and 1.05 of arbitrary optical units (AOU). No correlations were found between MCT1 and CD147. The high transport velocity of the MCT1/CD147 could explain the LC: PL ratio close to 1, this velocity plus the grasping mechanism may explain the constant of pH values. The APBT submitted to intense physical activity showed a tendency to increase the LC: PL ratio, and homogeneously express the MCT1/CD147 complex / FAPESP: 11/11080-0
2

The influence of aging and cardiovascular training status upon monocarboxylate transporters

Richards, William 02 December 2005 (has links)
No description available.
3

Expressão dos transportadores de monocarboxilatos de equinos e cães /

Feringer-Junior, Walter Heinz January 2017 (has links)
Orientador: Guilherme de Camargo Ferraz / Resumo: O principal mecanismo de transporte dos íons lactato e H+ em equinos e cães é o complexo transportador formado pelos transportadores de monocarboxilatos, isoformas 1 (MCT1) e 4 (MCT4) juntamente com a proteína auxiliar CD147. Objetivando identificar diferenças entre equinos com desempenho distinto, 16 equinos da raça Brasileiro de Hipismo (BH) foram distribuídos em dois grupos, desempenho inferior (DI, n=8) e desempenho superior (DS, n=8) que foram submetidos a teste de salto incrementai (TSI). Realizou-se biópsia do músculo Gluteus medius para tipificação e análise das expressões das isoformas MCT1, MCT4 e CD147. Amostras sanguíneas foram colhidas para avaliar as expressões MCT1 e CD147 das hemácias. Aplicaram-se testes de normalidade de Shapiro Wilk e homogeneidade de Levene. As medidas morfométricas foram submetidas ao teste de Tukey. Teste “t” de Student não pareado para a comparação das médias dos grupos DI e DS. Aplicou-se correlação de Spearman para as expressões dos transportadores. Para todas as análises utilizou-se p≤0,05. Não houve diferença entre os grupos quanto à frequência de cada tipo de fibra e constatou-se maior quantidade das fibras tipo I em relação às fibras IIA e IIX em todos os equinos avaliados. Não houve diferença entre os pesos moleculares e a expressão das proteínas MCT1, MCT4, e CD147 musculares ou sanguíneas. Houve correlações positivas entre MCT1 vs. CD147 e MCT4 vs. CD147 musculares dos grupos DI e DS. As correlações encontradas foram esperadas ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The central transport mechanism of lactate and H+ ions in horses and dogs is the carrier complex formed by the monocarboxylate, isoform 1 (MCT1) and 4 (MCT4) associated with the ancillary protein CD147. This study aimed to identify possible differences between horses with different performances levels, 16 horses of the Brazilian Sport Horse breed (BH) were distributed in two groups, inferior performance (IP, n = 8) and superior performance (SP, n = 8). A Gluteus medius muscle biopsy was performed for cellular typing and analysis of MCT1, MCT4, and CD147 muscle expressions. By jugular venipuncture, blood samples were collected to evaluate MCT1 and CD147 expressions in the red blood cells (RBC). Normality Shapiro Wilk test and homogeneity of Levene were applied. The morphometric measurements were submitted to the Tukey test, and not paired Student's t-test were applied to compare the mean of the IP and SP groups for all variables and was used Spearman's correlation for isoform expressions, for all analyzes, p≤0.05. There were no differences between the groups regarding the frequency of each type of fiber and a higher number of type I fibers were observed about the IIA and IIX fibers in all groups. There was no difference between molecular weights and expressions of MCT1, MCT4, and CD147 in muscle or blood. There were positive correlations between muscles MCT1 vs CD147 and MCT4 vs CD147 in both groups. The relationships found were expected since the MCT1 and 4 depended on the CD... (Complete abstract click electronic access below) / Doutor
4

The role and therapeutic significance of monocarboxylate transporters in prostate cancer

Hutchinson, Laura January 2017 (has links)
It has been shown that tumour cells are capable of switching to glycolytic metabolism for the production of ATP even in the presence of oxygen, this is known as aerobic glycolysis or the 'Warburg effect'. The glycolytic phenotype has been associated with tumour aggressiveness and poor outcome in several cancer types. This makes the area of cancer metabolism an attractive area for the potential identification of new therapeutic targets. One key component, required for cells to maintain the glycolytic phenotype, is the presence of monocarboxylate transporters that are capable of exporting lactate. These transporters are vital for the maintenance of the intracellular pH of cells under these conditions. This study was centred around the hypothesis that altering expression of MCTs would impact on the metabolism of tumour cells and, therefore, other key characteristics of cells relating to metastatic capabilities and survival following treatment. For the purpose of this work, prostate cancer cell lines were transfected with lentiviral particles targeting overexpression of MCT1 or MCT4, or knockdown of MCT4. Following transfection, cellular metabolic profiles were assessed under normoxic and hypoxic conditions and the metastatic phenotype of each cell line was investigated. Additionally, the effect of MCT expression on response to chemotherapy and radiation therapy was explored, and a siRNA metabolome screen was performed to identify combinations of targets that may produce synthetic lethality in prostate cancer cell lines. It was shown that changes in the expression of MCT1 or MCT4 did not cause significant changes in the metastatic phenotypes of the prostate cancer cell lines investigated. Some differences were observed in the metabolic pathways used by these prostate cancer cells following alterations in MCT expression. For example, overexpression of MCT1 in DU145 cells resulted in an increase in intracellular lactate. Additionally, MCT4 knockdown in PC3 cells was able to reduce OXPHOS under reduced oxygen. MCT1 overexpression was able to sensitise androgen-independent prostate cancer cells to treatment with chemotherapy and radiation therapy. Furthermore, combinations of siRNA treatments were identified that may be capable of producing synthetic lethality. In summary, findings in this study indicated that targeting MCT1 and MCT4 expression could offer therapeutic benefit in prostate cancer. However, it was also highlighted that the roles of these transporters are specific to cancer type, and even cell line.
5

Regulative Einflüsse auf die Monocarboxylattransporter 1 und 4 im Pansenepithel des Schafes / Regulatory influences on the monocarboxylate transporters 1 and 4 in the ruminal epithelium of sheep

Benesch, Franziska 05 October 2016 (has links) (PDF)
Einleitung: Monocarboxylattransporter (MCT) 1 & 4 sind in zahlreichen Geweben als Kotransporter für Monocarboxylate und Protonen beschrieben. Auch im Pansenepithel werden MCT benötigt, um kurzkettige Fettsäuren (SCFA) aus dem Pansenlumen in die Pansenepithelzelle aufzunehmen (MCT4) und um SCFA und deren Metabolite aus der Pansenepithelzelle in das Blut auszuschleusen (MCT1). Die transepitheliale Permeation von SCFA über die Pansenwand ist von enormer Bedeutung, da sie die wichtigste Energiequelle der Wiederkäuer darstellen. Die beteiligten Transportprozesse müssen dementsprechend einer Anpassung an variierende Mengen von SCFA unterliegen. Bisherige Studien bei anderen Spezies deuten auf eine Regulation des MCT1 auf mRNA Ebene über den Peroxisom-Proliferator-aktivierten Rezeptor α (PPARα) hin. Ziele der Untersuchung: Das Ziel dieser Arbeit war herauszufinden, ob MCT1 in ovinen Pansenepithelzellen über PPARα reguliert wird und ob auch MCT4 dieser Regulation unterliegt. Eine gleichzeitige Regulation beider Transporter läge nahe, da sie gemeinsam an der transepithelialen Permeation beteiligt sind. Die Auswirkungen solch einer Regulation auf die Proteinexpression und die Transportleistung der MCT sollte charakterisiert werden. Ebenfalls war das Potenzial der bei erhöhter Kraftfutterfütterung vermehrt anfallenden SCFA Butyrat auf die MCT1 Expression zu untersuchen. Material & Methoden: Aus dem Vorhof von Schafen wurden Pansenepithelzellen gewonnen und entsprechend einer bereits etablierten Methode kultiviert. Nach einer Subkultivierung wurden die Zellen immunzytochemisch mit Antikörpern gegen MCT1, MCT4 und Na+/K+-ATPase untersucht, um deren Lokalisation in den kultivierten Pansenepithelzellen zu bestimmen. Weiterhin erfolgte eine Behandlung mit WY 14.643, einem spezifischen, synthetischen PPARα Agonisten, sowie mit GW 6471, einem Antagonisten des PPARα. Mittels qPCR wurden die relativen mRNA Mengen von MCT1, MCT4, ACO, CPT1A und CACT bestimmt und auf die Referenzgene GAPDH und Na+/K+-ATPase normalisiert. Die Proteinexpression von MCT1 und MCT4 wurde mittels Western Blot bestimmt. Zur funktionellen Quantifizierung wurde der intrazelluläre pH-Wert der Zellen mittels Spektrofluorometrie gemessen und der laktatabhängige Protonentransport als Vergleichswert zwischen den Behandlungen genutzt. Um den MCT-abhängigen Teil des Transportes zu bestimmen, wurde ein spezifischer MCT1 & 4 Inhibitor, die p-Hydroxymercuribenzensulfonsäure (pHMB) eingesetzt. Die Zellen wurden mit Butyrat über einen Zeitraum von 6 und 48 h induziert. Die Erfassung der MCT1 Expression erfolgte mittels semiquantitativer PCR. Ergebnisse: MCT1 & 4 sind sowohl in der Zellmembran als auch intrazellulär in den Pansenepithelzellen lokalisiert. Die mRNA Expressionsdaten konnten zeigen, dass MCT1 und die PPARα Zielgene durch WY 14.643 hochreguliert werden konnten, wohingegen die MCT4 Expression keine eindeutige Antwort auf die Stimulation zeigt. Die Behandlung mit den Antagonisten zeigt eine Abhängigkeit der MCT1 Expression von PPARα, die MCT4 Expression konnte dagegen nicht beeinflusst werden. Mittels pHMB gelang es, den laktatabhängigen Protonenexport fast vollständig zu blocken. Sowohl laktatabhängiger Protonenexport als auch die Proteinexpression zeigten keine Änderung durch WY 14.643 Stimulation. Die Butyratexposition veränderte die Morphologie der Pansenepithelzellen und schien nicht geeignet für Untersuchungen der mRNA Expression zu sein. Schlussfolgerungen: Es konnte in dieser Arbeit erstmals gezeigt werden, dass MCT1 in Pansenepithelzellen über PPARα reguliert wird, nicht aber MCT4. PPARα scheint demnach einer der entscheidenden Angriffspunkte für die Regulation des SCFA Transportes zu sein, dessen natürliche Liganden im Pansen aber noch nicht bekannt sind. Damit legt diese Arbeit den Grundstein für regulative Studien am intakten Pansenepithel. / Introduction: Monocarboxylate transporters (MCT) 1 & 4 are cotransporters of monocarboxylates and protons in a variety of mammalian cell types. In the ruminal epithelium MCT are necessary to transport short-chain fatty acids (SCFA) from the lumen into the ruminal epithelial cell (MCT4) and to discharge SCFA and their metabolites from the cell into the blood (MCT1). Transepithelial permeation of SCFA is of great importance, because they are the main source of energy for ruminants. The regulation of appropriate transport proteins should thus be subject to the adaptation to varying SCFA amounts. Previous studies in other species suggested that gene expression of MCT1 is regulated by peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor. Aims: The aim of the study was to examine if MCT1 in ruminal epithelial cells is regulated by PPARα and furthermore if MCT4 can be regulated by PPARα, as well. A simultaneous regulation seems likely, because both are acting jointly in the transepithelial transporting of SCFA. The implications of such a regulation on protein expression and transport capacity of MCT should be characterized. The effect of butyrate, a SCFA which increases under concentrate feeding, on MCT1 expression was determined. Materials & Methods: Ruminal epithelial cells of sheep were cultivated according to methods previously established. After subcultivation, immunocytochemistry with antibodies against MCT1, MCT4 and Na+/K+-ATPase was performed to determine their localization in ruminal epithelial cells. For studying the influence of PPARα, WY 14.643, a synthetic and selective ligand of PPARα, and GW 6471, a synthetic antagonist of PPARα, were applied to the culture medium of the cells. After processing the specimens, the relative amount of mRNA of MCT1, MCT4 and the target genes ACO, CPT1A and CACT were analyzed by qPCR and normalized on the reference genes GAPDH and Na+/K+-ATPase. Protein abundance of MCT1 & 4 was measured by using the Western Blot method. Functional quantification was measured by the intracellular pH (pHi) of cells using spectrofluorometry as well as comparing the effect of WY 14.643 treatment on lactate-dependent proton export. To determine the MCT-dependent part of the pHi recovery, p-hydroxymercuribenzoic acid (pHMB), a specific inhibitor of MCT1 & 4, was applied. Cells were also treated with butyrate for 6 h and 48 h and the mRNA abundance of MCT1 was analyzed by semiquantitative PCR. Results: Both MCT1 and MCT4 were localized in the cell membrane as well as in the cytoplasm of ruminal epithelial cells. By qPCR it could be demonstrated that the mRNA abundance of MCT1 and PPARα target genes in the ruminal epithelial cells was increased by WY 14.643 in comparison to untreated cells, whereas the response of MCT4 did not yield distinct results. Treatment with the PPARα antagonist pointed out, that MCT1 is influenced by PPARα, but not MCT4. Lactate-dependent proton export was blocked almost completely by pHMB. Both lactate-dependent proton export and protein expression were not altered by WY 14.643 treatment. Butyrate exposure changed the morphology of ruminal epithelial cells and seemed unsuitable for the analysis of mRNA expression. Conclusion: For the first time, it could be demonstrated, that MCT1 in ruminal epithelial cells is regulated by PPARα, but not MCT4. PPARα seems to be a vital target in the rumen for SCFA transport regulation, whose natural triggers have yet to be identified. Furthermore, this study provides the basis for regulative studies on intact ruminal epithelium.
6

Regulative Einflüsse auf die Monocarboxylattransporter 1 und 4 im Pansenepithel des Schafes

Benesch, Franziska 21 June 2016 (has links)
Einleitung: Monocarboxylattransporter (MCT) 1 & 4 sind in zahlreichen Geweben als Kotransporter für Monocarboxylate und Protonen beschrieben. Auch im Pansenepithel werden MCT benötigt, um kurzkettige Fettsäuren (SCFA) aus dem Pansenlumen in die Pansenepithelzelle aufzunehmen (MCT4) und um SCFA und deren Metabolite aus der Pansenepithelzelle in das Blut auszuschleusen (MCT1). Die transepitheliale Permeation von SCFA über die Pansenwand ist von enormer Bedeutung, da sie die wichtigste Energiequelle der Wiederkäuer darstellen. Die beteiligten Transportprozesse müssen dementsprechend einer Anpassung an variierende Mengen von SCFA unterliegen. Bisherige Studien bei anderen Spezies deuten auf eine Regulation des MCT1 auf mRNA Ebene über den Peroxisom-Proliferator-aktivierten Rezeptor α (PPARα) hin. Ziele der Untersuchung: Das Ziel dieser Arbeit war herauszufinden, ob MCT1 in ovinen Pansenepithelzellen über PPARα reguliert wird und ob auch MCT4 dieser Regulation unterliegt. Eine gleichzeitige Regulation beider Transporter läge nahe, da sie gemeinsam an der transepithelialen Permeation beteiligt sind. Die Auswirkungen solch einer Regulation auf die Proteinexpression und die Transportleistung der MCT sollte charakterisiert werden. Ebenfalls war das Potenzial der bei erhöhter Kraftfutterfütterung vermehrt anfallenden SCFA Butyrat auf die MCT1 Expression zu untersuchen. Material & Methoden: Aus dem Vorhof von Schafen wurden Pansenepithelzellen gewonnen und entsprechend einer bereits etablierten Methode kultiviert. Nach einer Subkultivierung wurden die Zellen immunzytochemisch mit Antikörpern gegen MCT1, MCT4 und Na+/K+-ATPase untersucht, um deren Lokalisation in den kultivierten Pansenepithelzellen zu bestimmen. Weiterhin erfolgte eine Behandlung mit WY 14.643, einem spezifischen, synthetischen PPARα Agonisten, sowie mit GW 6471, einem Antagonisten des PPARα. Mittels qPCR wurden die relativen mRNA Mengen von MCT1, MCT4, ACO, CPT1A und CACT bestimmt und auf die Referenzgene GAPDH und Na+/K+-ATPase normalisiert. Die Proteinexpression von MCT1 und MCT4 wurde mittels Western Blot bestimmt. Zur funktionellen Quantifizierung wurde der intrazelluläre pH-Wert der Zellen mittels Spektrofluorometrie gemessen und der laktatabhängige Protonentransport als Vergleichswert zwischen den Behandlungen genutzt. Um den MCT-abhängigen Teil des Transportes zu bestimmen, wurde ein spezifischer MCT1 & 4 Inhibitor, die p-Hydroxymercuribenzensulfonsäure (pHMB) eingesetzt. Die Zellen wurden mit Butyrat über einen Zeitraum von 6 und 48 h induziert. Die Erfassung der MCT1 Expression erfolgte mittels semiquantitativer PCR. Ergebnisse: MCT1 & 4 sind sowohl in der Zellmembran als auch intrazellulär in den Pansenepithelzellen lokalisiert. Die mRNA Expressionsdaten konnten zeigen, dass MCT1 und die PPARα Zielgene durch WY 14.643 hochreguliert werden konnten, wohingegen die MCT4 Expression keine eindeutige Antwort auf die Stimulation zeigt. Die Behandlung mit den Antagonisten zeigt eine Abhängigkeit der MCT1 Expression von PPARα, die MCT4 Expression konnte dagegen nicht beeinflusst werden. Mittels pHMB gelang es, den laktatabhängigen Protonenexport fast vollständig zu blocken. Sowohl laktatabhängiger Protonenexport als auch die Proteinexpression zeigten keine Änderung durch WY 14.643 Stimulation. Die Butyratexposition veränderte die Morphologie der Pansenepithelzellen und schien nicht geeignet für Untersuchungen der mRNA Expression zu sein. Schlussfolgerungen: Es konnte in dieser Arbeit erstmals gezeigt werden, dass MCT1 in Pansenepithelzellen über PPARα reguliert wird, nicht aber MCT4. PPARα scheint demnach einer der entscheidenden Angriffspunkte für die Regulation des SCFA Transportes zu sein, dessen natürliche Liganden im Pansen aber noch nicht bekannt sind. Damit legt diese Arbeit den Grundstein für regulative Studien am intakten Pansenepithel. / Introduction: Monocarboxylate transporters (MCT) 1 & 4 are cotransporters of monocarboxylates and protons in a variety of mammalian cell types. In the ruminal epithelium MCT are necessary to transport short-chain fatty acids (SCFA) from the lumen into the ruminal epithelial cell (MCT4) and to discharge SCFA and their metabolites from the cell into the blood (MCT1). Transepithelial permeation of SCFA is of great importance, because they are the main source of energy for ruminants. The regulation of appropriate transport proteins should thus be subject to the adaptation to varying SCFA amounts. Previous studies in other species suggested that gene expression of MCT1 is regulated by peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor. Aims: The aim of the study was to examine if MCT1 in ruminal epithelial cells is regulated by PPARα and furthermore if MCT4 can be regulated by PPARα, as well. A simultaneous regulation seems likely, because both are acting jointly in the transepithelial transporting of SCFA. The implications of such a regulation on protein expression and transport capacity of MCT should be characterized. The effect of butyrate, a SCFA which increases under concentrate feeding, on MCT1 expression was determined. Materials & Methods: Ruminal epithelial cells of sheep were cultivated according to methods previously established. After subcultivation, immunocytochemistry with antibodies against MCT1, MCT4 and Na+/K+-ATPase was performed to determine their localization in ruminal epithelial cells. For studying the influence of PPARα, WY 14.643, a synthetic and selective ligand of PPARα, and GW 6471, a synthetic antagonist of PPARα, were applied to the culture medium of the cells. After processing the specimens, the relative amount of mRNA of MCT1, MCT4 and the target genes ACO, CPT1A and CACT were analyzed by qPCR and normalized on the reference genes GAPDH and Na+/K+-ATPase. Protein abundance of MCT1 & 4 was measured by using the Western Blot method. Functional quantification was measured by the intracellular pH (pHi) of cells using spectrofluorometry as well as comparing the effect of WY 14.643 treatment on lactate-dependent proton export. To determine the MCT-dependent part of the pHi recovery, p-hydroxymercuribenzoic acid (pHMB), a specific inhibitor of MCT1 & 4, was applied. Cells were also treated with butyrate for 6 h and 48 h and the mRNA abundance of MCT1 was analyzed by semiquantitative PCR. Results: Both MCT1 and MCT4 were localized in the cell membrane as well as in the cytoplasm of ruminal epithelial cells. By qPCR it could be demonstrated that the mRNA abundance of MCT1 and PPARα target genes in the ruminal epithelial cells was increased by WY 14.643 in comparison to untreated cells, whereas the response of MCT4 did not yield distinct results. Treatment with the PPARα antagonist pointed out, that MCT1 is influenced by PPARα, but not MCT4. Lactate-dependent proton export was blocked almost completely by pHMB. Both lactate-dependent proton export and protein expression were not altered by WY 14.643 treatment. Butyrate exposure changed the morphology of ruminal epithelial cells and seemed unsuitable for the analysis of mRNA expression. Conclusion: For the first time, it could be demonstrated, that MCT1 in ruminal epithelial cells is regulated by PPARα, but not MCT4. PPARα seems to be a vital target in the rumen for SCFA transport regulation, whose natural triggers have yet to be identified. Furthermore, this study provides the basis for regulative studies on intact ruminal epithelium.
7

In vitro-Untersuchungen zum Einfluss von konjugierten Linolsäuren auf kultivierte Pansenepithelzellen vom Schaf als direkt exponiertes Gewebe bei oraler Supplementierung

Masur, Franziska 15 August 2018 (has links)
Die vorliegende Arbeit befasst sich mit der Einflussnahme von konjugierten Linolsäuren (CLA) und strukturverwandten Fettsäuren auf Pansenepithelzellen (PEZ) in Kultur. Die in-vitro Untersuchungen mit primär kultivierten PEZ vom Schaf haben gezeigt, dass eine 48-stündige Inkubation mit CLA C18:2 cis-9, trans-11 (c9t11) und CLA C18:2 trans-10, cis-12 (t10c12) sowie Linolsäure, Ölsäure und trans-Vaccensäure (TVA) zu Veränderungen im Fettsäuremuster der Zellen sowie in der Expression der mRNA verschiedener Proteine führte. Aus den Veränderungen im Fettsäuremuster wurde die Aufnahme sowie die Metabolisierung der supplementierten Fettsäuren abgeleitet. Als wesentlicher Metabolit der TVA wurde die c9t11 identifiziert. Mit dem Nachweis der Stearoyl-CoA-Desaturase (SCD) -mRNA in den PEZ sowie im nativen Gewebe konnte so die endogene CLA-Synthese in den PEZ bestätigt werden. Analysiert wurden außerdem mittels quantitativer rt-PCR die Expression der SCD-mRNA und die mRNA von zwei Transportproteinen, den Monocarboxylat-Transportern (MCT) 1 und 4. Von beiden ist bekannt, dass sie in den Transport kurzkettiger Fettsäuren (SCFA) involviert sind. Die Inkubation mit den einzelnen Fettsäuren führte einheitlich zur Abnahme der SCD-mRNA Expression sowie zu einem verminderten Gehalt der Hauptprodukte der SCD, der C16:1 cis-9 und der C18:1 cis-9. Bezüglich der MCT1 und 4 mRNA-Expression wurde in der Regel eine Heraufregulierung nach Zugabe der Fettsäuren beobachtet. Des Weiteren wurden regulative Einflüsse von PPARα auf die MCTs und die SCD und von PPARγ auf den MCT1 und die SCD nach c9t11-Inkubation mit entsprechenden Antagonisten-Versuchen festgestellt. Die Studien beleuchten somit grundlegende Mechanismen des Stoffwechsels von langkettigen ungesättigten Fettsäuren in PEZ und deren Einflussnahme auf Transkriptionsfaktoren und auf spezifische, für den Wiederkäuer bedeutende Transportproteine für SCFA. Die funktionelle Relevanz dieser Ergebnisse für den Pansen und den Wiederkäuer aber auch für andere Gewebe und Species muss in weiteren Studien geklärt werden.:Inhaltsverzeichnis Abkürzungsverzeichnis 3 1 Einleitung 5 Allgemein 5 1.1 CLA-Nomenklatur 6 1.2 Bildung von CLAs und deren Vorkommen 7 1.3 CLA-Supplementierung beim Rind 9 1.4 Zu CLAs strukturverwandte Fettsäuren im Pansen 10 1.5 Potenzielle Wirkungen von CLAs und strukturverwandten Fettsäuren auf das Pansenepithel 11 1.5.1 Aufbau und Bedeutung des Pansenepithels 11 1.5.2 Resorption von langkettigen Fettsäuren über das Pansenepithel 11 1.5.3 Veränderungen der Fettsäurezusammensetzung nach Supplementierung 11 1.5.3.1 Metabolisierung 12 1.5.3.2 SCD und die endogene Synthese von CLA c9t11 13 1.5.4 CLA-Targets im Pansenepithel 15 1.5.4.1 SCD 15 1.5.4.2 Monocarboxylattransporter 16 1.5.4.3 PPAR als Transkriptionsfaktor für die SCD und die MCTs 19 2 Zielstellung 21 3 Originalarbeit 22 4 Ergänzung zur Originalarbeit 43 4.1 Nachweis von SCD-mRNA im nativen Pansenepithel des Schafes 43 Zusammenfassung der Arbeit 44 Literaturverzeichnis 49 Anhang (Supplemental Material) 59 Erklärung zum Eigenanteil der Dissertationsschrift 67 Erklärung über die eigenständige Abfassung der Arbeit 69 Publikationen und Vorträge im Rahmen der Dissertation 70
8

Preclinical Incorporation Dosimetry of [18F]FACH—A Novel 18F-Labeled MCT1/MCT4 Lactate Transporter Inhibitor for Imaging Cancer Metabolism with PET

Sattler, Bernhard, Kranz, Mathias, Wenzel, Barbara, Jain, Nalin T., Moldovan, Rare¸s-Petru, Toussaint, Magali, Deuther-Conrad, Winnie, Ludwig, Friedrich-Alexander, Teodoro, Rodrigo, Sattler, Tatjana, Sadeghzadeh, Masoud, Sabri, Osama, Brust, Peter 20 April 2023 (has links)
Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13–15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time–activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.

Page generated in 0.0493 seconds