Spelling suggestions: "subject:"men field theory""
81 |
j = 3/2 Quantum spin-orbital liquids / Líquidos spin-orbitais quânticos j = 3/2Natori, Willian Massashi Hisano 17 August 2018 (has links)
Quantum spin liquids (QSLs) are strongly correlated systems displaying fascinating phenomena like long-range entanglement and fractionalized excitations. The research on these states has since its beginning followed trends generated by the synthesis of new compounds and the construction of new theoretical tools. In coherence with this history, a manifold of new results about QSLs were established during the past decade due to studies on the integrable Kitaev model on the honeycomb lattice. This j = 1/2 model displays bond-dependent and anisotropic exchanges that are essential to stabilize its QSL ground state with Majorana fermion excitations and emergent Z2 gauge field. Even more interestingly, this model is relevant to understand the magnetism of a certain class of 4/5d5 Mott insulators with specific lattice constraints, t2g orbital degeneracy and strong spin-orbit coupling (SOC). This mechanism defining these so-called Kitaev materials can be applied to similar compounds based on transition metal ions in different electronic configurations. In this thesis, I investigate minimal models for two types of 4/5d1 Mott insulators: the ones on the ordered double perovskite structure (ODP) and the ones isostructural to the Kitaev materials. Their effective models generically show bond-dependent and anisotropic interactions involving multipoles of an effective j = 3/2 angular momentum. Such degrees of freedom are conveniently written in terms of pseudospin s and pseudo-orbital τ operators resembling spin and orbital operators of Kugel-Khomskii models with twofold orbital degeneracy. Despite their anisotropy, the two realistic models display continuous global symmetries in the limit of vanishing Hund\'s coupling enhancing quantum fluctuations and possibly stabilizing a QSL phase. Parton mean-field theory was used to propose fermionic QSLs that will be called quantum spin-orbital liquids (QSOLs) due their dependence with s and τ. On ODPs, I studied a chiral QSOL with Majorana fermion excitations and a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. These nodal lines are topological defects of a non-Abelian Berry connection and the system exhibits dispersing surface states. Several experimental responses of the chiral QSOL within the mean-field approximation are compared with the experimental data available for the spin liquid candidate Ba2YMoO6. Moreover, based on a symmetry analysis, I discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for 4/5d1 Mott insulators and show that the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions. The model for materials isostructural to the Kitaev materials has an emergent SU(4) symmetry that is made explicit by means of a Klein transformation on pseudospin degrees of freedom. The model is known to stabilize a QSOL on the honeycomb lattice and instigated the investigation of QSOLs on a generalization of this lattice to three dimensions. Parton mean-field theory was used once again to propose the liquid states, and a variational Monte Carlo (VMC) method was used to compute the energies of the projected wave functions. The numerical results show that the lowest-energy QSOL corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. Further VMC computations also revealed that this state is stable against formation of plaquette ordering (tetramerization). The energy of this QSOL is highly competitive even when Hund\'s coupling induced perturbations are included, as shown by comparison with simple ordered states. Extensions and perspectives for future work are discussed in the end of this thesis. / Líquidos de spin quânticos (QSLs) são sistemas fortemente correlacionados que apresentam fenômenos fascinantes como emaranhamento de longo alcance e excitações fracionárias. A pesquisa a respeito destes estados seguiu tendências geradas pela síntese de novos compostos e construção de novas técnicas teóricas desde seu princípio. Coerentemente com essa história, uma variedade de novos resultados a respeito de líquidos de spin foram estabelecidos na última década graças a estudos feitos sobre o modelo integrável de Kitaev na rede colmeia. Este modelo de spins j = 1/2 apresenta interações de troca anisotrópicas e direcionalmente dependentes que são essenciais para estabilizar um estado fundamental do tipo QSL com férmions de Majorana e campo de gauge Z2 emergente. Ainda mais interessante, este modelo é relevante para se entender o magnetismo de uma certa classe de isolantes de Mott baseados em metais de transição na configuração 4/5d5 em redes específicas, degenerescência orbital t2g e acoplamento spin-órbita forte (SOC). Esse mecanismo que define os chamados materiais do tipo Kitaev podem ser aplicados a compostos baseados em metais de transição em configurações eletrônicas diferentes. Nesta tese, eu investigo modelos mínimos para dois tipos de isolantes de Mott do tipo 4/5d1: os que se apresentam na estrutura perovskita dupla ordenada (ODP) e os isostruturais aos materiais do tipo Kitaev. Seus modelos efetivos genericamente apresentam interações multipolares anisotrópicas e direcionalmente dependentes de um momento angular efetivo j = 3/2. Estes graus de liberdade são convenientemente escritos em termos de operadores de pseudospin s e pseudo-orbital τ semelhantes a operadores de spin e orbital de modelos do tipo Kugel-Khomskii com orbitais duplamente degenerados. A despeito da anisotropia, esses dois modelos realísticos apresentam simetrias globais contínuas no limite de acoplamento de Hund nulo que incrementam flutuações quânticas e possivelmente estabilizam uma fase do tipo QSL. A teoria de campo médio com partons foi usada para propor QSLs fermiônicos que serão chamados de líquidos spin-orbitais quânticos (QSOLs) devido à dependência deles com s e τ. Em ODPs, eu estudei um líquido de spin quiral com excitações do tipo férmion de Majorana e um espectro sem gap caracterizado por linhas nodais ao longo das arestas da zona de Brillouin. Essas linhas nodais são defeitos topológicos de uma conexão de Berry não-abeliana e o sistema apresenta estados de superfície dispersivos. Várias respostas experimentais foram calculadas para o QSOL quiral dentro da aproximação de campo médio e comparadas com os dados experimentais disponíveis para o candidato a líquido de spin Ba2YMoO6. Além disso, baseado em uma análise de simetria, discuto os operadores envolvidos nas amplitudes de espalhamento de raios-x ressonante para isolantes de Mott na configuração 4/5d1 e mostro que seções de choque de RIXS permitem estudar seletivamente os graus de liberdade de pseudospins e pseudo-orbitais. Para o caso particular do líquido spin-orbital quiral, essas seções de choque nos fornecem informações sobre o espectro de diferentes sabores de férmions de Majorana. Esse modelo possui uma simetria SU(4) emergente que é tornada explícita através de uma transformações de Klein nos graus de liberdade de pseudospin. Sabe-se que este modelo estabiliza um QSOL na rede colmeia, o que instigou uma investigação de QSOLs na generalização desta rede em três dimensões. A teoria de campo médio com partons foi usada novamente para propor estes líquidos quânticos, e o método de Monte Carlo Variacional (VMC) foi usado para calcular as energias das funções de onda projetadas. Os resultados numéricos mostraram que o QSOL de menor energia corresponde a um estado de fluxo-zero com superfície de Fermi envolvendo partons fermiônicos de quatro cores. Cálculos adicionais com VMC também demonstraram que este estado é estável à formação de ordem de plaquetas (tetramerização). A energia deste QSOL é altamente competitiva mesmo quando perturbações induzidas pelo acoplamento de Hund são incluídas, o que é mostrado através da comparação com estados ordenados simples. Extensões e perspectivas para trabalhos futuros são discutidas no final desta tese.
|
82 |
Computer simulation and theoretical prediction of thermally induced polarisationWirnsberger, Peter January 2018 (has links)
In this thesis, we study the phenomenon of thermally induced polarisation using a combination of theory and computer simulation. Molecules of sufficiently low symmetry exhibit thermo-molecular orientation when subjected to a temperature gradient, leading to considerable electrostatic fields in polar liquids. Here, we first use non-equilibrium molecular dynamics simulations to study this interesting effect numerically. To this end, we propose an integration algorithm to impose a constant heat flux in simulations and show that it greatly improves energy conservation compared to a previous algorithm. We next investigate the thermal polarisation of water and find that truncation of electrostatic interactions can lead to severe artefacts, such as the wrong sign of polarisation and an overestimation of the electric field. We further show that the quadrupole-moment contribution to the electric field is significant and responsible for an inversion of its sign. To facilitate the theoretical description of electrostatic interactions, we propose a new dipolar model fluid as a perturbation of a Stockmayer fluid. Using this modified Stockmayer model, we provide numerical evidence for the recently proposed phenomenon of thermally induced monopoles. We show that the electrostatic field generated by a pair of heated/cooled colloidal particles immersed in such a solvent can be trivially described by two Coulomb charges. Finally, we propose a mean-field theory to predict the thermo-polarisation effect exhibited by our model fluid theoretically, and demonstrate near quantitative agreement with simulation results.
|
83 |
j = 3/2 Quantum spin-orbital liquids / Líquidos spin-orbitais quânticos j = 3/2Willian Massashi Hisano Natori 17 August 2018 (has links)
Quantum spin liquids (QSLs) are strongly correlated systems displaying fascinating phenomena like long-range entanglement and fractionalized excitations. The research on these states has since its beginning followed trends generated by the synthesis of new compounds and the construction of new theoretical tools. In coherence with this history, a manifold of new results about QSLs were established during the past decade due to studies on the integrable Kitaev model on the honeycomb lattice. This j = 1/2 model displays bond-dependent and anisotropic exchanges that are essential to stabilize its QSL ground state with Majorana fermion excitations and emergent Z2 gauge field. Even more interestingly, this model is relevant to understand the magnetism of a certain class of 4/5d5 Mott insulators with specific lattice constraints, t2g orbital degeneracy and strong spin-orbit coupling (SOC). This mechanism defining these so-called Kitaev materials can be applied to similar compounds based on transition metal ions in different electronic configurations. In this thesis, I investigate minimal models for two types of 4/5d1 Mott insulators: the ones on the ordered double perovskite structure (ODP) and the ones isostructural to the Kitaev materials. Their effective models generically show bond-dependent and anisotropic interactions involving multipoles of an effective j = 3/2 angular momentum. Such degrees of freedom are conveniently written in terms of pseudospin s and pseudo-orbital τ operators resembling spin and orbital operators of Kugel-Khomskii models with twofold orbital degeneracy. Despite their anisotropy, the two realistic models display continuous global symmetries in the limit of vanishing Hund\'s coupling enhancing quantum fluctuations and possibly stabilizing a QSL phase. Parton mean-field theory was used to propose fermionic QSLs that will be called quantum spin-orbital liquids (QSOLs) due their dependence with s and τ. On ODPs, I studied a chiral QSOL with Majorana fermion excitations and a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. These nodal lines are topological defects of a non-Abelian Berry connection and the system exhibits dispersing surface states. Several experimental responses of the chiral QSOL within the mean-field approximation are compared with the experimental data available for the spin liquid candidate Ba2YMoO6. Moreover, based on a symmetry analysis, I discuss the operators involved in resonant inelastic X-ray scattering (RIXS) amplitudes for 4/5d1 Mott insulators and show that the RIXS cross sections allow one to selectively probe pseudospin and pseudo-orbital degrees of freedom. For the chiral spin-orbital liquid in particular, these cross sections provide information about the spectrum for different flavors of Majorana fermions. The model for materials isostructural to the Kitaev materials has an emergent SU(4) symmetry that is made explicit by means of a Klein transformation on pseudospin degrees of freedom. The model is known to stabilize a QSOL on the honeycomb lattice and instigated the investigation of QSOLs on a generalization of this lattice to three dimensions. Parton mean-field theory was used once again to propose the liquid states, and a variational Monte Carlo (VMC) method was used to compute the energies of the projected wave functions. The numerical results show that the lowest-energy QSOL corresponds to a zero-flux state with a Fermi surface of four-color fermionic partons. Further VMC computations also revealed that this state is stable against formation of plaquette ordering (tetramerization). The energy of this QSOL is highly competitive even when Hund\'s coupling induced perturbations are included, as shown by comparison with simple ordered states. Extensions and perspectives for future work are discussed in the end of this thesis. / Líquidos de spin quânticos (QSLs) são sistemas fortemente correlacionados que apresentam fenômenos fascinantes como emaranhamento de longo alcance e excitações fracionárias. A pesquisa a respeito destes estados seguiu tendências geradas pela síntese de novos compostos e construção de novas técnicas teóricas desde seu princípio. Coerentemente com essa história, uma variedade de novos resultados a respeito de líquidos de spin foram estabelecidos na última década graças a estudos feitos sobre o modelo integrável de Kitaev na rede colmeia. Este modelo de spins j = 1/2 apresenta interações de troca anisotrópicas e direcionalmente dependentes que são essenciais para estabilizar um estado fundamental do tipo QSL com férmions de Majorana e campo de gauge Z2 emergente. Ainda mais interessante, este modelo é relevante para se entender o magnetismo de uma certa classe de isolantes de Mott baseados em metais de transição na configuração 4/5d5 em redes específicas, degenerescência orbital t2g e acoplamento spin-órbita forte (SOC). Esse mecanismo que define os chamados materiais do tipo Kitaev podem ser aplicados a compostos baseados em metais de transição em configurações eletrônicas diferentes. Nesta tese, eu investigo modelos mínimos para dois tipos de isolantes de Mott do tipo 4/5d1: os que se apresentam na estrutura perovskita dupla ordenada (ODP) e os isostruturais aos materiais do tipo Kitaev. Seus modelos efetivos genericamente apresentam interações multipolares anisotrópicas e direcionalmente dependentes de um momento angular efetivo j = 3/2. Estes graus de liberdade são convenientemente escritos em termos de operadores de pseudospin s e pseudo-orbital τ semelhantes a operadores de spin e orbital de modelos do tipo Kugel-Khomskii com orbitais duplamente degenerados. A despeito da anisotropia, esses dois modelos realísticos apresentam simetrias globais contínuas no limite de acoplamento de Hund nulo que incrementam flutuações quânticas e possivelmente estabilizam uma fase do tipo QSL. A teoria de campo médio com partons foi usada para propor QSLs fermiônicos que serão chamados de líquidos spin-orbitais quânticos (QSOLs) devido à dependência deles com s e τ. Em ODPs, eu estudei um líquido de spin quiral com excitações do tipo férmion de Majorana e um espectro sem gap caracterizado por linhas nodais ao longo das arestas da zona de Brillouin. Essas linhas nodais são defeitos topológicos de uma conexão de Berry não-abeliana e o sistema apresenta estados de superfície dispersivos. Várias respostas experimentais foram calculadas para o QSOL quiral dentro da aproximação de campo médio e comparadas com os dados experimentais disponíveis para o candidato a líquido de spin Ba2YMoO6. Além disso, baseado em uma análise de simetria, discuto os operadores envolvidos nas amplitudes de espalhamento de raios-x ressonante para isolantes de Mott na configuração 4/5d1 e mostro que seções de choque de RIXS permitem estudar seletivamente os graus de liberdade de pseudospins e pseudo-orbitais. Para o caso particular do líquido spin-orbital quiral, essas seções de choque nos fornecem informações sobre o espectro de diferentes sabores de férmions de Majorana. Esse modelo possui uma simetria SU(4) emergente que é tornada explícita através de uma transformações de Klein nos graus de liberdade de pseudospin. Sabe-se que este modelo estabiliza um QSOL na rede colmeia, o que instigou uma investigação de QSOLs na generalização desta rede em três dimensões. A teoria de campo médio com partons foi usada novamente para propor estes líquidos quânticos, e o método de Monte Carlo Variacional (VMC) foi usado para calcular as energias das funções de onda projetadas. Os resultados numéricos mostraram que o QSOL de menor energia corresponde a um estado de fluxo-zero com superfície de Fermi envolvendo partons fermiônicos de quatro cores. Cálculos adicionais com VMC também demonstraram que este estado é estável à formação de ordem de plaquetas (tetramerização). A energia deste QSOL é altamente competitiva mesmo quando perturbações induzidas pelo acoplamento de Hund são incluídas, o que é mostrado através da comparação com estados ordenados simples. Extensões e perspectivas para trabalhos futuros são discutidas no final desta tese.
|
84 |
Improved nuclear predictions of relevance to the r-process of nucleosynthesisSamyn, Mathieu 22 January 2004 (has links)
Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
|
85 |
Theoretical methods for the electronic structure and magnetism of strongly correlated materialsLocht, Inka L. M. January 2017 (has links)
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).
|
86 |
La supraconductivité non-conventionnelle du ruthénate de strontium : corrélations électroniques et couplage spin-orbiteGingras, Olivier 09 1900 (has links)
Le progrès technologique de nos sociétés est intimement lié aux matériaux. La physique de la matière condensée cherche à expliquer, décrire et prédire leurs propriétés à partir de lois fondamentales. Bien que l’on connaisse assez bien les axiomes qui régissent notre univers, la combinaison d’un grand nombre de petits systèmes compris individuellement mais interagissants ensemble mène à des propriétés émergentes qui peuvent être complexes et difficilement
prévisibles. Dans cette thèse, nous étudions la supraconductivité non-conventionnelle dans les matériaux corrélés, un phénomène émergent des fortes interactions électroniques qui possède un immense potentiel technologique. Pour ce faire, nous réalisons des simulations numériques sur un matériau bien spécifique: le ruthénate de strontium.
Dans un premier temps, nous discutons des états normaux des matériaux corrélés devenant supraconducteurs. Alors que la théorie des bandes permet de décrire le continuum entre un isolant électrique et un métal, elle n’arrive pas à décrire les phénomènes émergeant des interactions à plusieurs électrons. Nous expliquons comment la théorie de la fonctionnelle de la densité permet d’obtenir la densité du niveau fondamental d’un système interagissant en le transformant vers un problème non-interagissant effectif. Elle peut également être employée pour les systèmes possédant un important couplage spin-orbite. Cependant, les fonctionnelles disponibles n’arrivent pas à bien incorporer les fortes corrélations électroniques. Une manière de corriger ce manque est d’employer la théorie du champ moyen dynamique. Cette dernière permet de capturer la dépendance en temps des interactions locales à un corps. Toutefois, la supraconductivité impliquant des paires d’électrons, il faut plutôt étudier des objets à deux corps afin de la caractériser. Nous discutons des critères nécessaires à la provocation de transitions supraconductrices, exprimés en termes de corrections du vertex. Également, nous présentons les paramètres d’ordre pour caractériser une phase supraconductrice.
La seconde partie se concentre sur la supraconductivité. D’abord, nous faisons un survol son historique, depuis sa découverte en 1911 jusqu’à celle de l’état supraconducteur du ruthénate de strontium. Ensuite, nous décrivons la supraconductivité conventionnelle, une classe particulière pour laquelle l’état ordonné est attribué à l’interaction entre les électrons et les vibrations du réseau cristallin. Puis, nous introduisons un autre mécanisme d’appariement: l’échange de fluctuations de spin et de charge. Finalement, nous présentons l’état des connaissances collectives modernes en ce qui a trait au ruthénate de strontium. Nos articles proposent de nouvelles avenues impliquant le couplage spin-orbite et les corrélations impaires en fréquences.
Nous terminons en introduisant différentes perspectives de recherche dans le domaine de la supraconductivité. / The technological progress of our societies is intimately linked with materials. Condensed matter physics tries to explain, describe and predict their properties from fundamental laws. Although we are quite familiar with the axioms that govern our universe, the combination of a large number of small systems understood individually but interacting together leads to emerging properties that can be complex and difficult to predict. In this thesis, we study unconventional superconductivity in correlated materials, a phenomenon emerging from strong electronic interactions that has immense technological potential. To do this, we carry out numerical simulations on a very specific material: strontium ruthenate.
First, we discuss the normal states of correlated materials becoming superconducting. While band theory can describe the continuum between an electrical insulator and a metal, it cannot describe the phenomena emerging from interactions with several electrons. We explain how density functional theory makes it possible to obtain the density of the fundamental level of an interacting system by mapping it into an effective non-interacting problem. It can also be used for systems with a large spin-orbit coupling. However, the available functionals do not manage to incorporate strong electronic correlations well. One way to correct this deficiency is to employ dynamical mean field theory. The latter makes it possible to capture the time dependence of interactions at the one body level. However, since superconductivity involves pairs of electrons, it is rather necessary to study two body objects in order to characterize it. We discuss the criteria necessary for inducing superconducting transitions, expressed in terms of vertex corrections. Also, we present the order parameters to characterize a superconducting phase.
The second part focuses on superconductivity. First, we review its history, from its discovery in 1911 to that of the superconducting state of strontium ruthenate. Next, we describe conventional superconductivity, a particular class for which the ordered state is attributed to the interaction between electrons and the vibrations of the crystal lattice. Then, we introduce another pairing mechanism: the exchange of spin and charge fluctuations. Finally, we present the state of modern collective knowledge about strontium ruthenate. Our articles propose new avenues involving spin-orbit coupling and odd frequency correlations.
We end by introducing different research perspectives in the field of superconductivity.
|
87 |
Plasmonic properties and applications of metallic nanostructuresZhen, Yurong 16 September 2013 (has links)
Plasmonic properties and the related novel applications are studied on various
types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure,
the motion of free electrons in a metal-film with nanoscale thickness is confined in
its normal dimension and free in the other two. Describing the free-electron motion at
metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation
of such motions and is well known. When further perforated with periodic array of
holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate
the coupling between free-space photon and SPP. We applied this concept to achieve
a plasmonic perfect absorber. The experimentally observed reflection dip splitting
is qualitatively explained by a perturbation theory based on the above concept. If
confined in 2D, the nanostructures become nanowires that intrigue a broad range of
research interests. We performed various studies on the resonance and propagation
of metal nanowires with different materials, cross-sectional shapes and form factors,
in passive or active medium, in support of corresponding experimental works. Finite-
Difference Time-Domain (FDTD) simulations show that simulated results agrees well
with experiments and makes fundamental mode analysis possible. Confined in 3D,
the electron motions in a single metal nanoparticle (NP) leads to localized surface
plasmon resonance (LSPR) that enables another novel and important application:
plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the
excited plasmon will decay into heat in the particle and will heat up the surrounding
liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP
to liquid will undergo an explosive process and make a vapor envelop: nanobubble.
We characterized the size, pressure and temperature of the nanobubble by a simple
model relying on Mie calculations and continuous medium assumption. A novel
effective medium method is also developed to replace the role of Mie calculations.
The characterized temperature is in excellent agreement with that by Raman scattering.
If fabricated in an ordered cluster, NPs exhibit double-resonance features and
the double Fano-resonant structure is demonstrated to most enhance the four-wave
mixing efficiency.
|
Page generated in 0.0885 seconds