• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Projeto de mecanismos flexíveis usando o método de otimização topológica. / Design of compliant mechanisms using topology optimization method.

Lima, Cicero Ribeiro de 16 April 2002 (has links)
Mecanismos flexíveis são mecanismos onde o movimento é dado pela flexibilidade da estrutura ao invés da presença de juntas e pinos. Tem grande aplicação em dispositivos de mecânica de precisão, área biomédica, e mais recentemente na construção de microeletromecanismos (“MEMS" em inglês). Várias técnicas são usadas no projeto de mecanismos flexíveis, sendo que entre elas, a Otimização Topológica tem se mostrado a mais genérica e sistemática. O método de Otimização Topológica combina um método de otimização com o método dos elementos finitos (MEF). A utilização da Otimização Topológica permite que um engenheiro ou cientista projete o mecanismo para a sua aplicação específica sem precisar adquirir conhecimentos específicos sobre estruturas e mecanismos flexíveis. Dessa forma, o objetivo desse trabalho é aplicar o método de Otimização Topológica no projeto de mecanismos flexíveis, usando o modelo de material SIMP (método de densidades). O projeto é definido como sendo um problema de otimização de uma estrutura flexível, sujeito à restrição na quantidade de material, onde a função objetivo é maximizar o deslocamento numa dada região do domínio da estrutura quando submetida a um dado carregamento em outra região. Para ilustrar a implementação do método são apresentados resultados de topologias bidimensionais de mecanismos flexíveis. / Compliant Mechanisms consist of mechanisms where the movement is giving by the structural flexibility rather than the presence of joints and pins. They are applied to precision mechanic devices, biomedical field, and more recently to the design of microelectromechanical systems (MEMS). Many techniques has been applied to design compliant mechanisms. Among them, topology optimization method is a generic and systematic method. Topology optimization combines optimization algorithms with finite element method and allows an engineer or a scientist to design a compliant mechanism for its application without having to acquire specific knowledge about structures or compliant mechanisms. Therefore, the objective of this work is to apply topology optimization to design compliant mechanisms. The topology optimization method implemented is based on the SIMP material model. The design is defined as the optimization problem of a flexible structure, subject to an amount of material constraint, where the objective function is to maximize the output displacement in a certain region of the structure domain due to an applied load to other region. To illustrate the implementation of the method, two-dimensional topologies of compliant mechanisms are presented as a result.
2

Projeto de mecanismos flexíveis usando o método de otimização topológica. / Design of compliant mechanisms using topology optimization method.

Cicero Ribeiro de Lima 16 April 2002 (has links)
Mecanismos flexíveis são mecanismos onde o movimento é dado pela flexibilidade da estrutura ao invés da presença de juntas e pinos. Tem grande aplicação em dispositivos de mecânica de precisão, área biomédica, e mais recentemente na construção de microeletromecanismos (“MEMS” em inglês). Várias técnicas são usadas no projeto de mecanismos flexíveis, sendo que entre elas, a Otimização Topológica tem se mostrado a mais genérica e sistemática. O método de Otimização Topológica combina um método de otimização com o método dos elementos finitos (MEF). A utilização da Otimização Topológica permite que um engenheiro ou cientista projete o mecanismo para a sua aplicação específica sem precisar adquirir conhecimentos específicos sobre estruturas e mecanismos flexíveis. Dessa forma, o objetivo desse trabalho é aplicar o método de Otimização Topológica no projeto de mecanismos flexíveis, usando o modelo de material SIMP (método de densidades). O projeto é definido como sendo um problema de otimização de uma estrutura flexível, sujeito à restrição na quantidade de material, onde a função objetivo é maximizar o deslocamento numa dada região do domínio da estrutura quando submetida a um dado carregamento em outra região. Para ilustrar a implementação do método são apresentados resultados de topologias bidimensionais de mecanismos flexíveis. / Compliant Mechanisms consist of mechanisms where the movement is giving by the structural flexibility rather than the presence of joints and pins. They are applied to precision mechanic devices, biomedical field, and more recently to the design of microelectromechanical systems (MEMS). Many techniques has been applied to design compliant mechanisms. Among them, topology optimization method is a generic and systematic method. Topology optimization combines optimization algorithms with finite element method and allows an engineer or a scientist to design a compliant mechanism for its application without having to acquire specific knowledge about structures or compliant mechanisms. Therefore, the objective of this work is to apply topology optimization to design compliant mechanisms. The topology optimization method implemented is based on the SIMP material model. The design is defined as the optimization problem of a flexible structure, subject to an amount of material constraint, where the objective function is to maximize the output displacement in a certain region of the structure domain due to an applied load to other region. To illustrate the implementation of the method, two-dimensional topologies of compliant mechanisms are presented as a result.
3

Projeto de mecanismos flexíveis com restrição de tensões utilizando o método da otimização topológica / Compliant mechanisms design with stress constraints using topology optimization

Meneghelli, Luís Renato 07 March 2013 (has links)
Made available in DSpace on 2016-12-12T20:25:11Z (GMT). No. of bitstreams: 1 Luis Reanto Meneghelli.pdf: 5980064 bytes, checksum: 65a0002e42f206e56e3875504a6f0660 (MD5) Previous issue date: 2013-03-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Compliant mechanisms are mechanical devices that transform or transfer motion, force or energy through a single part. These mechanisms have important applications in micro electromechanical systems (MEMS) as well as systems that require large accuracy in motion and micro scale. In this work the compliant mechanisms design is performed by means of the Topology Optimization Method, and the optimization problem is formulated in order to maximize the strain energy stored inside the mechanism, eliminating the appearance of hinges. The kinematic behavior of the mechanism is imposed through a set of constraints on displacements of a few degrees of freedom of interest. The elastic behavior is imposed by means of a global stress constraint and some issues associated to the stress parametrization in topology optimization are addressed in the context of mechanisms design. The numerical examples shown that the proposed formulation is able to generate clean topologies of feasible compliant mechanisms. Based on the results, it is clear that the stress constraint has a deep impact on the design of compliant mechanisms, since it can constraint the amount of energy used to enforce the displacement constraints. / Mecanismos flexíveis são dispositivos mecânicos que transformam ou transferem movimento, força ou energia, através de uma única peça. Este tipo de mecanismo encontra aplicações importantes em sistemas micro eletromecânicos (MEMS, micro electromechanical systems) e demais sistemas que exijam grandes precisões nos movimentos e escala microscópica. O projeto de mecanismos flexíveis é realizado através do Método de Otimização Topológica e o problema de otimização será formulado tendo em vista a maximização de energia de deformação elástica armazenada pelo mecanismo, eliminando assim a ocorrência de rótulas (hinges). O comportamento cinemático do mecanismo é imposto através de restrições sobre o campo de deslocamentos em alguns graus de liberdade de interesse. O comportamento elástico dos mecanismos flexíveis é imposto usando um critério global de restrição de tensão e algumas questões importantes associadas a parametrização das tensões são discutidas no contexto de projeto de mecanismos. Os exemplos numéricos mostram que é possível obter topologias bem definidas e que satisfaçam as restrições do projeto. Com base nestes exemplos, verifica-se que a restrição de tensão exerce forte influência no resultado, podendo limitar a quantidade de energia necessária para atender às restrições do mecanismo.
4

Aplicação do método da otimização topológica para o projeto de mecanismos flexíveis menos suscetíveis à ocorrência de dobradiças. / Topology optimization to design hinge-free compliant mechanisms.

Silva, Marcelo Colpas da 01 June 2007 (has links)
Os mecanismos flexíveis são dispositivos capazes de transmitir força e movimento através da deformação elástica. Têm grande importância a uma série de aplicações nas quais os mecanismos de corpos rígidos não seriam viáveis, como por exemplo, os sistemas microeletromecânicos. Existem várias maneiras pelas quais os mecanismos flexíveis podem ser projetados, sendo a otimização topológica um método bastante difundido por ser de aplicação sistemática, ou seja, não requer do projetista qualquer ação analítica durante a etapa de projeto. Na maioria dos casos, o método da otimização topológica combina o método dos elementos finitos com um método de programação matemática. Logo, faz-se necessário discretizar a região do espaço na qual o material disponível será distribuído para determinar o mecanismo flexível adequado à aplicação desejada. Freqüentemente, o mecanismo projetado apresenta duas regiões sólidas unidas por um único nó pertencente à malha de elementos finitos. Durante a transmissão do movimento, este nó age como uma dobradiça conectada às duas regiões. Trata-se de um efeito indesejado, pois compromete a modelagem e a fabricação do componente mecânico. Assim, neste trabalho, foram estudadas técnicas destinadas à redução da ocorrência das \"dobradiças\" no projeto de mecanismos flexíveis por otimização topológica. Foi implementado em linguagem C um código que permite projetar mecanismos flexíveis submetidos a um único carregamento ou múltiplos carregamentos (mecanismos multi-flexíveis). Com o objetivo de analisar e explorar outros aspectos da formulação implementada no código, investigou-se também a sua utilização no projeto de estruturas rígidas. Como resultado, é mostrada a influência dos diversos parâmetros de otimização no projeto de mecanismos flexíveis sem dobradiças, permitindo analisar a eficácia da formulação implementada. / Compliant mechanisms are devices capable of transmitting force and displacement through elastic deformation. They are extremely important for a number of applications in which the mechanisms of rigid bodies would not be feasible, such as microelectromechanical systems. There are several ways through which compliant mechanisms can be designed, being topology optimization a highly diffused method because of its systematic application, once, it does not require from the designer any analytical action during the stage of the project. In most cases, topology optimization method combines the finite element method with a mathematical program method. Therefore, it is necessary to discretize the region of the space in which the available material will be distributed to determine the appropriate compliant mechanism for the desired application. However, the mechanism designed often presents two solid regions united by one single node. During movement transmission, this node acts as a hinge connected to both regions. This is an undesired effect, as it compromises the modeling and manufacturing of the mechanical component. Thus, this work covers techniques aiming at reducing the occurrence of hinges in the design of compliant mechanisms through topology optimization. A code in C language was implemented, which allows the design of compliant mechanisms subjected to one single load or multiple loads (multi-compliant mechanisms). With the purpose of analyzing and exploring other aspects of the formulation implemented in the code, its use in the design of rigid structures was also investigated. As a result, the influence of several optimization parameters in the design of compliant mechanisms without hinges is shown. This allows to analyze the efficiency of the formulation implemented.
5

Aplicação do método da otimização topológica para o projeto de mecanismos flexíveis menos suscetíveis à ocorrência de dobradiças. / Topology optimization to design hinge-free compliant mechanisms.

Marcelo Colpas da Silva 01 June 2007 (has links)
Os mecanismos flexíveis são dispositivos capazes de transmitir força e movimento através da deformação elástica. Têm grande importância a uma série de aplicações nas quais os mecanismos de corpos rígidos não seriam viáveis, como por exemplo, os sistemas microeletromecânicos. Existem várias maneiras pelas quais os mecanismos flexíveis podem ser projetados, sendo a otimização topológica um método bastante difundido por ser de aplicação sistemática, ou seja, não requer do projetista qualquer ação analítica durante a etapa de projeto. Na maioria dos casos, o método da otimização topológica combina o método dos elementos finitos com um método de programação matemática. Logo, faz-se necessário discretizar a região do espaço na qual o material disponível será distribuído para determinar o mecanismo flexível adequado à aplicação desejada. Freqüentemente, o mecanismo projetado apresenta duas regiões sólidas unidas por um único nó pertencente à malha de elementos finitos. Durante a transmissão do movimento, este nó age como uma dobradiça conectada às duas regiões. Trata-se de um efeito indesejado, pois compromete a modelagem e a fabricação do componente mecânico. Assim, neste trabalho, foram estudadas técnicas destinadas à redução da ocorrência das \"dobradiças\" no projeto de mecanismos flexíveis por otimização topológica. Foi implementado em linguagem C um código que permite projetar mecanismos flexíveis submetidos a um único carregamento ou múltiplos carregamentos (mecanismos multi-flexíveis). Com o objetivo de analisar e explorar outros aspectos da formulação implementada no código, investigou-se também a sua utilização no projeto de estruturas rígidas. Como resultado, é mostrada a influência dos diversos parâmetros de otimização no projeto de mecanismos flexíveis sem dobradiças, permitindo analisar a eficácia da formulação implementada. / Compliant mechanisms are devices capable of transmitting force and displacement through elastic deformation. They are extremely important for a number of applications in which the mechanisms of rigid bodies would not be feasible, such as microelectromechanical systems. There are several ways through which compliant mechanisms can be designed, being topology optimization a highly diffused method because of its systematic application, once, it does not require from the designer any analytical action during the stage of the project. In most cases, topology optimization method combines the finite element method with a mathematical program method. Therefore, it is necessary to discretize the region of the space in which the available material will be distributed to determine the appropriate compliant mechanism for the desired application. However, the mechanism designed often presents two solid regions united by one single node. During movement transmission, this node acts as a hinge connected to both regions. This is an undesired effect, as it compromises the modeling and manufacturing of the mechanical component. Thus, this work covers techniques aiming at reducing the occurrence of hinges in the design of compliant mechanisms through topology optimization. A code in C language was implemented, which allows the design of compliant mechanisms subjected to one single load or multiple loads (multi-compliant mechanisms). With the purpose of analyzing and exploring other aspects of the formulation implemented in the code, its use in the design of rigid structures was also investigated. As a result, the influence of several optimization parameters in the design of compliant mechanisms without hinges is shown. This allows to analyze the efficiency of the formulation implemented.

Page generated in 0.1218 seconds