• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 4
  • 3
  • 1
  • Tagged with
  • 60
  • 31
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Greener dye synthesis: continuous, solvent-free synthesis of commodity perylene diimides by twin-screw extrusion

Cao, Q., Crawford, Deborah E., Shi, C., James, S.L. 27 January 2020 (has links)
Yes / A continuous, scalable, and solvent‐free method for the synthesis of various naphthalic imides and perylene diimides (PDIs) using twin‐screw extrusion (TSE) is reported. Using TSE, naphthalic imides were obtained quantitatively without the need for excess amine reactant or product purification. With good functional‐group tolerance, alkyl and benzyl amine derived PDIs (incl. commercial dyes) were obtained in 50–99 % yield. Use of K2CO3, enabled synthesis of more difficult aniline‐derived PDIs. Furthermore, an automated continuous TSE process for Pigments Black 31 and 32 is demonstrated, with a throughput rate of about 1500 g day−1, corresponding to a space time yield of about 30×103 kg m−3 day−1, which is 1–2 orders of magnitude greater than for solvent‐based batch methods. These methods provide substantial waste reductions and improved efficiency compared to conventional solvent‐based methods. / Engineering and Physical Sciences Research Council. Grant Numbers: EP/L019655/1, IAA1718-04-1117
22

Use of batch mixing to investigate the continuous solvent-free mechanical synthesis of OLED materials by twin-screw extrusion (TSE)

Crawford, Deborah E., James, S.L., McNally, T. 13 February 2020 (has links)
Yes / Mechanochemical synthesis has the potential to change the way in which chemistry is conducted, particularly with regard to removing or dramatically reducing the need for solvents. Recently, it has been demonstrated that mechanochemistry can be carried out continuously and on large scale through the use of twin-screw extrusion (TSE). TSE has successfully been applied to the synthesis of cocrystals, metal organic frameworks (MOFs), deep eutectic solvents (DESs), metal complexes, and organic condensation reactions. However, while TSE provides a route for mechanochemical synthesis to be developed into a continuous, high-volume manufacturing process, little is currently understood about how to best optimize the various process parameters involved. Herein, we investigate the use of a batch mixer that has been previously used in polymer processing, to optimize mechanochemical reactions performed by extrusion. In particular, reactions between 8-hydroxyquinoline (Hq) and metal acetate salts of zinc or aluminum to give quinolinate complexes Znq2·AcOH and Alq3·AcOH, which are of interest for organic light-emitting diode (OLED) applications, have been investigated. The manner in which the progress of the reaction correlates with the machine torque, temperature, and specific mechanical energy (SME) imparted by the batch mixer has been elucidated. Significantly, this knowledge enabled optimization of the mechanochemical reactions by TSE through the key parameters of screw speed, feed rate, temperature, and particle size. / EPSRC (EP/L019655/1).
23

Understanding Palladium Metal Catalyzed Reactions Under Mechanochemical Conditions

Shah, Sheeniza January 2022 (has links)
No description available.
24

Effects of Mechanochemical Conditions on Protein Rheology and Biophysical Properties

Crain, Jazmine January 2022 (has links)
No description available.
25

Environmentally friendly synthesis using high speed ball milling

Waddell, Daniel C. 20 April 2012 (has links)
No description available.
26

Understanding the Role of Energy in Chemical Reactions from Mechanics to Photochemistry

McKissic, Kelley S. 16 October 2015 (has links)
No description available.
27

Controlling Mechanochemical Reactivity through the Regioisomers of 1,2,3-Triazole

Yi, Ziqi 24 July 2022 (has links)
No description available.
28

Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free

Crawford, Deborah E., Miskimmin, C.K.G., Albadarin, A.B., Walker, G., James, S.L. 31 January 2020 (has links)
No / Mechanochemistry provides a method to reduce or eliminate the use of solvents by carrying out reactions through the grinding of neat reagents. Until recently a significant drawback of this form of synthesis has been the limited ability to scale up. However, it has been shown that twin screw extrusion (TSE) may overcome this problem as demonstrated in the continuous synthesis of co-crystals, Metal Organic Frameworks (MOFs) and Deep Eutectic Solvents (DES), in multi kg h−1 quantities. TSE has provided a means to carry out mechanochemical synthesis in a continuous, large scale and efficient fashion, which is adaptable to a manufacturing process. Herein, we highlight the potential of this technique for organic synthesis by reporting four condensation reactions, the Knoevenagel condensation, imine formation, aldol reaction and the Michael addition, to produce analytically pure products, most of which did not require any post synthetic purification or isolation. Each reaction was carried out in the absence of solvents and the water byproduct was conveniently removed as water vapour during the extrusion process due to the elevated temperatures used. Furthermore, the Knoevenagel condensation has been studied in detail to gain insight into the mechanism by which these mechanochemical reactions proceed. The results point to effective wetting of one reactant by another as being critical for these reactions to occur under these reaction conditions. / EPSRC EP/L019655/1
29

Characterization and Applications of Force-induced Reactions

Wang, Junpeng January 2015 (has links)
<p>Just as heat, light and electricity do, mechanical forces can also stimulate reactions. Conventionally, these processes - known as mechanochemistry - were viewed as comprising only destructive events, such as bond scission and material failure. Recently, Moore and coworkers demonstrated that the incorporation of mechanophores, i.e., mechanochemically active moieties, can bring new types of chemistry. This demonstration has inspired a series of fruitful works, at both the molecular and material levels, in both theoretical and experimental aspects, for both fundamental research and applications. This dissertation evaluates mechanochemical behavior in all of these contexts. </p><p>At the level of fundamental reactivity, forbidden reactions, such as those that violate orbital symmetry effects as captured in the Woodward-Hoffman rules, remain an ongoing challenge for experimental characterization, because when the competing allowed pathway is available, the reactions are intrinsically difficult to trigger. Recent developments in covalent mechanochemistry have opened the door to activating otherwise inaccessible reactions. This dissertation describes the first real-time observation and quantified measurement of four mechanically activated forbidden reactions. The results provide the experimental benchmarks for mechanically induced forbidden reactions, including those that violate the Woodward-Hoffmann and Woodward-Hoffmann-DePuy rules, and in some cases suggest revisions to prior computational predictions. The single-molecule measurement also captured competing reactions between isomerization and bimolecular reaction, which to the best of our knowledge, is the first time that competing reactions are probed by force spectroscopy. </p><p> Most characterization for mechanochemistry has been focused on the reactivity of mechanophores, and investigations of the force coupling efficiency are much less reported. We discovered that the stereochemistry of a non-reactive alkene pendant to a reacting mechanophore has a dramatic effect on the magnitude of the force required to trigger reactivity on a given timescale (here, a 400 pN difference for reactivity on the timescale of 100 ms). The stereochemical perturbation has essentially no measurable effect on the force-free reactivity, providing an almost perfectly orthogonal handle for tuning mechanochemical reactivity independently of intrinsic reactivity. </p><p>Mechanochemical coupling is also applied here to the study of reaction dynamics. The dynamics of reactions at or in the immediate vicinity of transition states are critical to reaction rates and product distributions, but direct experimental probes of those dynamics are rare. The s-trans, s-trans 1,3-diradicaloid transition states are trapped by tension along the backbone of purely cis-substituted gem-difluorocyclopropanated polybutadiene using the extensional forces generated by pulsed sonication of dilute polymer solutions. Once released, the branching ratio between symmetry-allowed disrotatory ring closing (of which the trapped diradicaloid structure is the transition state) and symmetry-forbidden conrotatory ring closing (whose transition state is nearby) can be inferred. Net conrotatory ring closing occurred in 5.0 ± 0.5% of the released transition states, as compared to 19 out of 400 such events in molecular dynamics simulations.</p><p>On the materials level, the inevitable stress in materials during usage causes bond breakage, materials aging and failure. A strategy for solving this problem is to learn from biological materials, which are capable to remodel and become stronger in response to the otherwise destructive forces. Benzocyclobutene has been demonstrated to mechanically active to ortho-quinodimethide, an intermediate capable for [4+4] dimerization and [4+2] cycloaddition. These features make it an excellent candidate for and synthesis of mechanochemical remodeling. A polymer containing hundreds of benzocyclobutene on the backbone was synthesized. When the polymer was exposed to otherwise destructive shear forces generated by pulsed ultrasound, its molecular weight increased as oppose to other mechanophore-containing polymers. When a solution of the polymer with bismaleimide was subjected to pulsed ultrasonication, crosslink occurred and the modulus increased by two orders of magnitude.</p> / Dissertation
30

Mechanochemistry for Active Materials and Devices

Gossweiler, Gregory Robert January 2016 (has links)
<p>The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles. </p><p>While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.</p><p>We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity. </p><p>In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.</p> / Dissertation

Page generated in 0.0639 seconds