• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Extrinsic and Intrinsic Factors Mediating Osteoarthritis

Kara A Negrini (8102609) 08 May 2020 (has links)
<p>Osteoarthritis (OA) is a leading cause of disability globally, with higher incidence in older people and lower socioeconomic status populations. The challenges health care systems face with management of the disease highlights the importance of OA research. Many studies examine possible risk factors of knee and hip OA including obesity, smoking, and alcohol consumption. Findings support that while obesity increases risk of knee OA, smoking is not a major risk factor. These extrinsic factors are, however, associated with lower socioeconomic status, and also with anxiety and depression disorders. Up to 30% of patients with chronic knee OA have described psychological stress and decreased quality of life due to debilitating pain, but the effects of psychological stress on development of knee OA has not been described.</p><p><br></p><p>At the cellular level, mechanosensitive cation channels in cartilage and bone, are involved with OA, but studies looking specifically at synovium and joint capsule are limited. Transient receptor potential (TRP) channels are upregulated in joint capsule in end-stage primary shoulder OA. We were unable to identify any previous studies evaluating Piezo channel expression in musculoskeletal soft tissues, but Piezo channel antagonism reduces chondrocyte death after mechanical injury. These findings suggest channels may help regulate joint responses to repetitive loading during training or work while also contributing to protective mechanisms within the musculoskeletal system. The overall objective of this research was to investigate factors that impact OA development or the disease phenotype. Two studies evaluated the following aims: 1) demonstrate the influence of chronic psychological stress on knee OA and overall systemic health, and 2) characterize the role of mechanosensitive channels in the joint capsule in OA. The first study used a mouse chronic social defeat model paired with destabilization of the medial meniscus (DMM) surgery to create a social stress scenario during OA development. We hypothesized chronic social defeat would exacerbate knee OA structural changes and systemic inflammation. The second study aimed to explore the role of mechanosensitive channels in joint capsule during OA development in the equine. Immunohistochemistry was performed on forelimb fetlock joint capsule from horses with varying degrees of lameness to first identify TRP and Piezo channel expression. Next, fibroblasts were isolated from the tissue to determine channel activity. We hypothesized that TRP and Piezo channels are required for normal homeostasis, but are dysregulated in OA and dysregulation contributes to fibrosis of the joint capsule. Joint capsule fibrosis leads to joint stiffening and reduced range of motion, two of the cardinal signs of OA.</p><p><br></p><p>The results of the first study showed OA was induced to a similar extent in both groups of mice that underwent DMM surgery. While anxiety- and depressive-like behaviors were exhibited by mice that underwent chronic social defeat episodes, unexpectedly, the majority of systemic inflammatory markers were not worse in mice with DMM and chronic social defeat compared to DMM alone. We were also able to show TRP and Piezo channel expression in one normal dorsal and palmar fetlock joint capsule sample, however, COVID-19 prevented further investigation. With our results we were able to conclude that while chronic social stress influences development of OA, in the current experiments, neither systemic inflammation nor structural signs of knee OA were worse with chronic social stress. We hope that exploration of OA through these two studies will help us understand how the disease contributes to overall systemic dysfunction while also providing a baseline for future development of TRP and Piezo channel modulators to prevent joint pathologies.</p>
2

Mécanotransduction dans les neurones sensoriels de mammifères

Hao, Jizhe 08 December 2011 (has links)
La mécanotransduction correspond à un processus dans lequel la force physique est convertie en signal chimique ou électrique. Ce processus est à la base de nombreuses fonctions physiologiques, y compris le sens du toucher, l’audition, la proprioception et la nociception. Nous ne connaissons pas à ce jour les mécanismes moléculaires à l’origine de la diversité fonctionnelle des mécanorécepteurs. L’objectif de thèse était de fournir 1 caractérisation des canaux mécanosensibles des neurones sensoriels afin d’identifier les mécanismes responsables des propriétés des mécanorécepteurs. 4 types de courants excitateurs ont été identifiés et classés sur la base de leurs cinétiques de relaxation: des courants à relaxation rapide, intermédiaire, lente ou ultra-lente. La relaxation résulte de l’adaptation et de l’inactivation. Nous montrons également que ces courants mécanosensibles possèdent des propriétés spécifiques permettant le codage des différents paramètres du stimulus mécanique. Tous s’activent graduellement en fonction de l’intensité du stimulus mécanique, mais seuls les courants à relaxation lente et ultralente informent sur la persistance du stimulus. A contrario, les courants à relaxation rapide et intermédiaire sont mis en jeu essentiellement par des stimulations rapides, ils traduisent donc la rapidité d’installation du stimulus. Nous avons ensuite identifié un nouveau courant mécanosensible potassique (IKmech) exerçant un effet inhibiteur sur la décharge des mécanorécepteurs. Le profil pharmacologique et les travaux menés sur des souris KO et transgéniques montrent que le courant IKmech est porté par la sous-unité Kv1.1 qui est mécano-susceptible via un mécanisme par lequel la pression altère la sensibilité au potentiel des canaux. En s’opposant aux courants excitateurs, le courant IKmech régule le seuil de décharge des mécano-nocicepteurs et la fréquence de décharge des mécanorécepteurs non nociceptifs. / The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. The aim of my thesis was to understand molecular mechanism of mechanotransduction in mammalian sensory neurons.We identified 4 types of mechanotransducer currents that distribute differentially in cutaneous nociceptors and mechanoreceptors and that differ in desensitization rates. Desensitization of mechanotransducer channels in mechanoreceptors was fast and mediated by channel inactivation and adaptation, which reduces the mechanical force sensed by the transduction channel. Both processes were promoted by negative voltage. These properties of mechanotransducer channels suited them to encode the dynamic parameters of the stimulus. In contrast, inactivation and adaptation of mechanotransducer channels in nociceptors had slow time courses and were suited to encode duration of the stimulus. Thus, desensitization properties of mechanotransducer currents relate to their functions as sensors of phasic and tonic stimuli and enable sensory neurons to achieve efficient stimulus representation.In the second work, we explored the molecular determinants of threshold differences and temporal adaptation among mammalian mechanoreceptors. We identified a novel mechanosensitive K+ current (IKmech) in different classes of mechanosensory neurons from mouse and rat DRGs. IKmech activates slowly in response to mechanical stimulation and is carried by Kv1.1 subunit-containing K+ channels. By antagonizing depolarizing drive induced by excitatory MS currents, IKMech regulates threshold for noxious mechano-perception and temporal adaptation in non-painful mechanosensation. Our work has identified Kv1.1 as an essential molecular element in defining the threshold range of mechanical sensitivity and temporal responses of fibers associated with mechanical perception.
3

To Hear Without and Ear: Mechanosensation in Plants

Paret, Taylor York January 2017 (has links)
No description available.
4

Méthodes de production et étude électrophysiologique de canaux ioniques : application à la pannexine1 humaine et au canal mécanosensible bactérien MscL / Production methods and electrophysiological study of ion channels : application to the human pannexine 1 and to the bacterial mechanosensitive channel MscL.

Assal, Reda 14 December 2011 (has links)
La production hétérologue des protéines membranaires reste difficile, peut-être parce que l’insertion dans la membrane de la cellule hôte constitue une étape limitante de la production. Afin de tourner cette difficulté, deux modes de synthèse ont été envisagés: la synthèse de protéines dans un système a-cellulaire, en l’absence de membrane mais en présence de détergent, ou l’adressage forcé de la protéine vers les corps d’inclusion dans le cas d’une expression plus classique en bactérie entière. La réalisation des deux stratégies repose sur l’utilisation de protéines de fusion possédant une séquence d’entraînement en amont du gène d’intérêt, soit qu’elles améliorent la traduction du transcrit en limitant le repliement spatial de ce dernier, soit qu’elles favorisent la production de la protéine d’intérêt en corps d’inclusion. La porine OmpX et le peptide T7 ont été choisis en cas d’expression dans les systèmes bactériens. La protéine SUMO est utilisée pour la production dans un lysat eucaryote. Les différentes approches ont été testées sur la production de la pannexine1 humaine (Px1).Si les séquences d’entraînement OmpX et le peptide T7 sont correctement produites in vitro, aucune des deux, en revanche, ne favorise la production de la Px1. Seul l’entraîneur SUMO est efficace. En effet, nous avons observé que cette protéine augmente la production de la Px1 dans un lysat eucaryote de germe de blé. Par ailleurs OmpX, connue pour être largement produite in vivo dans les corps d’inclusion, n’entraîne pas la localisation de la Px1 dans ces structures. Contre toute attente, l’étiquette T7 dirige la Px1 dans les corps d’inclusion. L’étude électrophysiologique de la Px1 a donc été effectuée à partir de la protéine produite in vivo (T7his-Px1) après renaturation, ou produite sous forme soluble in vitro (his6-Px1) dans le lysat eucaryote. Dans le cas de la protéine T7his-Px1 renaturée, une activité canal qui rappelle celle qui est observée après expression dans l’ovocyte de Xénope, a été détectée en patch-clamp, mais dans trois cas seulement. Dans le cas de la protéine his6-Px1, aucune activité canal n’est clairement détectée. Dans une deuxième partie de ce travail on examine le rôle de la boucle périplasmique dans la sensibilité à la pression du MscL, un canal mécanosensible bactérien devenu un système modèle dans l’étude de la mécanosensibilité. Presque toutes les études fonctionnelles sur ce canal ont été réalisées sur le canal de E.coli, alors que la structure a été obtenue à partir de l’homologue de M. tuberculosis. Une étude fonctionnelle a montré que le MscL de M. tuberculosis est difficile à ouvrir : son ouverture requiert l’application d’une pression double de celle qui est nécessaire chez E.coli. Les deux homologues diffèrent principalement par la longueur de leur unique boucle périplasmique. De manière à examiner le rôle de la boucle, on a comparé l’activité du canal MscL de E.coli, celle du canal de M. tuberculosis et celle d’une protéine chimère constituée de la protéine de M. tuberculosis dans laquelle la boucle a été changée pour celle de la protéine de E.coli. De manière inattendue, nous avons constaté que les canaux de E.coli et de M. tuberculosis ont la même sensibilité à la pression. La protéine chimère n’avait pas d’activité canal. Si ce travail ne permet pas de conclure quant au rôle de la boucle, il montre sans ambigüité que contrairement à ce qui a été rapporté les canaux MscL de E.coli et de M. tuberculosis ne diffèrent pas sensiblement sur le plan fonctionnel / The production of heterologous membrane protein is notoriously difficult; this might be due to the fact that insertion of the protein in the membrane host is a limiting step. To by-pass this difficulty, two modes of synthesis were tested: 1) production in a cell-free system devoid of biological membrane but supplemented with detergent or liposomes, 2) production in bacteria, with targeting of the membrane protein to inclusion bodies. Both strategies were tested for the production of the human pannexin 1 channel (Px1). The gene coding the protein was fused with an “enhancer” sequence resulting in the addition of a peptide or short protein at the N terminus of the protein of interest. This enhancer sequence which is well produced in vitro or in vivo is supposed to facilitate the translation of the protein of interest. Three enhancer sequences were chosen: 1) the small porin OmpX of E. coli, which, in addition, should target the protein to inclusion bodies when the protein is expressed in bacteria 2) a peptide of phage T7 for expression in E.coli lysate or E.coli cells 3) the small protein SUMO for production in a wheat germ cell-free system. In a bacterial cell-free system, neither OmpX nor T7 promoted Px1 production. Px1 is only produced when the SUMO enhancer sequence is used in the wheat germ system. In bacteria, OmpX, known to form inclusions bodies did not promote the targeting of the fusion protein to inclusion bodies. Unexpectedly, the peptide T7 was able to do it.Px1 obtained from inclusion bodies (T7his-Px1) was renatured and reconstituted in liposomes. Similarly his6-Px1 produced in wheat germ system was reconstituted in liposomes. Both preparations were used for electrophysiological studies (patch-clamp and planar bilayers). With the refolded T7his-Px1, channel activity reminiscent of that observed with Px1 expressed in Xenope oocyte (Bao et al., 2004) could be detected, but only in three cases. In the case of his6-Px1, no clear channel activity could be observed. The second part of this work deals with the involvement of the periplasmic loop of the bacterial mechanosensitive channel MscL in its sensitivity to pressure. Mscl has become a model system for the investigation of mechanosensisity. Nearly all functional studies have been performed on MscL from E.coli while the structure of the protein has been obtained from the Mycobacterium tuberculosis homologue. In one functional study it was shown that MscL from M. tuberculosis is extremely difficult to open, gating at twice the pressure needed for E.coli MscL The periplasmic loop is the most variable sequence between the two homologues, being longer in E.coli than in M. tuberculosis. In order to assess the role of the periplamic loop in the sensitivity to pressure, we compared the activity of the E.coli and M. tuberculosis MscL and of a chimeric protein made of the M. tuberculosis protein in which the periplasmic loop has been exchanged for that of the E. coli channel. Unexpectedly, M. tuberculosis and E .coli MscL were observed to gate at a similar applied pressure. The chimeric protein had no functional activity. In conclusion, this study does not allow any conclusion as to the role of the loop in the sensitivity to pressure, but it shows clearly that, in contrast to the results of a previous study, there is no functional difference between E. coli and M. tuberculosis MscL.
5

Membrane protein mechanotransduction : computational studies and analytics development

Dahl, Anna Caroline E. January 2014 (has links)
Membrane protein mechanotransduction is the altered function of an integral membrane protein in response to mechanical force. Such mechanosensors are found in all kingdoms of life, and increasing numbers of membrane proteins have been found to exhibit mechanosensitivity. How they mechanotransduce is an active research area and the topic of this thesis. The methodology employed is classical molecular dynamics (MD) simulations. MD systems are complex, and two programs were developed to reduce this apparent complexity in terms of both visual abstraction and statistical analysis. Bendix detects and visualises helices as cylinders that follow the helix axis, and quantifies helix distortion. The functionality of Bendix is demonstrated on the symporter Mhp1, where a state is identified that had hitherto only been proposed. InterQuant tracks, categorises and orders proximity between parts of an MD system. Results from multiple systems are statistically interrogated for reproducibility and significant differences at the resolution of protein chains, residues or atoms. Using these tools, the interaction between membrane and the Escherichia coli mechanosensitive channel of small conductance, MscS, is investigated. Results are presented for crystal structures captured in different states, one of which features electron density proposed to be lipid. MD results supports this hypothesis, and identify differential lipid interaction between closed and open states. It is concluded that propensity for lipid to leave for membrane bulk drives MscS state stability. In a subsequent study, MscS is opened by membrane surface tension for the first time in an MD setup. The gating mechanism of MscS is explored in terms of both membrane and protein deformation in response to membrane stretch. Using novel tension methodology and the longest MD simulations of MscS performed to date, a molecular basis for the Dashpot gating mechanism is proposed. Lipid emerges as an active structural element with the capacity to augment protein structure in the protein structure-function paradigm.

Page generated in 0.1023 seconds