61 |
Icaritin reduces tert-butylhydroperoxide-induced cell damage through activation of Nrf2 and Akt in H9c2 cardiomyoblasts / 淫羊藿素的心肌保護的作用Lei, Si Wan January 2012 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
62 |
嶺南道地藥材巴戟天和木蝴蝶的主要活性成分分離工藝研究 Research on the separation of main active components of Morindae officinalis Radix and Oroxyli Semen / by Zhu Kan. / Research on the separation of main active components of Morindae officinalis Radix and Oroxyli Semen朱侃 January 2014 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
63 |
喜樹堿二聚體聚合物膠束的合成, 表徵與抗腫瘤活性研究 / Synthesis, characterization and anti-cancer activity of camptothecin dimer loaded polymeric micelles徐孟澤 January 2017 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
64 |
Studies on metabolism and pharmacological effect of active constituents of a Tibetan herbal medicine, halenia elliptica /cWong, Yan. / CUHK electronic theses & dissertations collectionJanuary 2007 (has links)
Halenia elliptica D. Don belongs to Gentianaceae family. It is often used as part of a traditional Tibetan medicine to treat hepatitis. In the present investigation, six major xanthone components were isolated and identified from Halenia elliptica. An HPLC/DAD/APCI/MS method was developed and validated for the quantitative analysis of these xanthones, including 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1), 1-hydroxy-2,3,4,7-tetramethoxy- xanthone (HM-2), 1-hydroxy-2,3,4,5-tetramethoxy-xanthone (HM-3), 1,7- dihydroxy-2,3,4,5-tetramethoxy-xanthone (HM-4), 1,5-dihydroxy-2,3-dimethoxy-xanthone (HM-5) and 1-0-[beta-D-xylopyranosyl-(1-6)-beta-D-glucopyranosyl]-2,3,5-trimethoxy-xanthone (HM-2-10). All the xanthones aglycons caused vasodilation in the coronary artery pre-contracted with 1 muM 5-HT, but the xanthone glycoside had no effect. HM-1 was one of the most abundant xanthones with the most potent vasorelaxant activity. / Mechanisms of the vasorelaxant effect of HM-1 were investigated. HM-1 showed a potent vasorelaxant activity on rat coronary artery involved both an endothelium-dependent mechanism involving NO and an endothelium-independent mechanism by inhibiting Ca2+ influx through L-type voltage-operated Ca2+ channels. / Taken together, in spite of the pharmacokinetics results showed that HM-1 was rapidly and widely distributed to tissues after intravenous administration in rats, with conjugation to being the major metabolic pathway in vivo, both HM-1 and its active metabolite (HM-5) show that they are important pharmacological agents with potentially useful therapeutic indications. / The metabolism and pharmacokinetics of HM-1 displayed biphasic elimination kinetics, with an elimination half-life of 60.4 +/- 4.2 min. Four other Phase I metabolites were isolated and identified as demethylated products in vitro. HM-1 was metabolised to HM-5 in the liver. Biliary excretion studies showed that both HM-1 and the metabolite (HM-5) underwent extensive phase II conjugation to form glucuronides and sulfates. Tissue distribution studies showed that HM-1 was widely distributed to different organs. Collection of urine and faeces over 24 h showed that 10.88% of dose was excreted from urine and 1.91% of dose via faeces. / With HM-5 being one of the major in vivo metabolites of HM-1, the effect of HM-5 has been studied on rat coronary artery and compared to HM-1. HM-5-mediated vasorelaxant effect was mediated through opening of potassium channel (TEA, 4-AP) and altering intracellular calcium by partial inhibition of Ca2+ influx through L-type voltage-operated Ca 2+ channels and intracellular Ca2+ stores. / "September 2007." / Source: Dissertation Abstracts International, Volume: 69-08, Section: B, page: 4699. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 195-218). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
65 |
Authentication of traditional Chinese medicines Radix Aconiti and Radix Aucklandiae by DNA and chemical technologies.January 2006 (has links)
Shum Ka Chiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 174-182). / Abstracts in English and Chinese. / Acknowledgement --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Table of content --- p.viii / List of figures --- p.xvi / List of tables --- p.xxii / Abbreviations --- p.xxv / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Importance of authentication of Traditional Chinese Medicines --- p.1 / Chapter 1.1.1 --- Confusing nomenclatures --- p.1 / Chapter 1.1.2 --- Similar morphologies of different medicinal materials --- p.2 / Chapter 1.1.3 --- Toxicities of medicinal materials --- p.2 / Chapter 1.1.4 --- Conservation of natural products --- p.2 / Chapter 1.2 --- TCM listed in the Pharmacopoeia of People's Republic of China --- p.3 / Chapter 1.3 --- Overview of mis-use and intoxication of TCM --- p.4 / Chapter 1.4 --- Ordinances regulating Chinese medicines as natural products --- p.7 / Chapter 1.4.1 --- Laws governing Chinese medicine --- p.7 / Chapter 1.4.2 --- Laws governing endangered species --- p.8 / Chapter 1.5 --- Current technologies in the authentication of Traditional Chinese Medicines and their limitations --- p.9 / Chapter 1.6 --- Historical applications of Radix Aconiti --- p.12 / Chapter 1.7 --- Modern applications of Radix Aconiti --- p.16 / Chapter 1.8 --- Research on Radix Aconiti and its chemical components --- p.17 / Chapter 1.8.1 --- Chemistry --- p.17 / Chapter 1.8.2 --- Pharmacology --- p.19 / Chapter 1.8.3 --- Molecular interaction --- p.22 / Chapter 1.9 --- Brief review on the systematics and phylogeny of Aconitum --- p.23 / Chapter 1.10 --- Historical applications of Radix Aucklandiae and related materials --- p.25 / Chapter 1.11 --- Modern applications of Radix Aucklandiae and related material --- p.27 / Chapter 1.12 --- Research on Aucklandiae and related material and their chemical components --- p.28 / Chapter 1.12.1 --- Chemistry --- p.28 / Chapter 1.12.2 --- Pharmacology --- p.29 / Chapter 1.13 --- Brief review on the systematics and phylogeny of Aucklandia and related medicinal species --- p.31 / Chapter 1.14 --- Authentication by DNA sequencing --- p.33 / Chapter 1.14.1 --- Introduction --- p.33 / Chapter 1.14.2 --- Criteria of sequence markers --- p.36 / Chapter 1.14.3 --- Model used to process polymorphism in DNA sequences --- p.37 / Chapter 1.15 --- Screening for novel markers --- p.38 / Chapter 1.15.1 --- Reason for screening novel markers --- p.38 / Chapter 1.15.2 --- Basic principle --- p.39 / Chapter 1.16 --- Introduction to gas chromatography- mass spectrometry --- p.40 / Chapter 1.16.1 --- Basic principles and components of GC-MS --- p.41 / Chapter 1.16.2 --- Advantages and limitations of GC-MS --- p.42 / Chapter 1.16.3 --- Usage of GC-MS on natural product analysis --- p.43 / Chapter 1.16.4 --- Chemometric analysis --- p.44 / Chapter 1.17 --- Objectives --- p.46 / Chapter Chapter 2. --- Materials and Methods --- p.47 / Chapter 2.1 --- Plant samples --- p.47 / Chapter 2.1.1 --- Samples of Aconitum --- p.47 / Chapter 2.1.2 --- Samples of Aucklandia and related species --- p.51 / Chapter 2.2 --- DNA extraction method --- p.58 / Chapter 2.2.1 --- Reagents --- p.58 / Chapter 2.2.2 --- Methods --- p.59 / Chapter 2.3 --- Chemical extraction methods --- p.61 / Chapter 2.4 --- Chemical standard extraction and purification method --- p.62 / Chapter 2.5 --- DNA sequencing --- p.63 / Chapter 2.5.1 --- Reagents --- p.63 / Chapter 2.5.2 --- Methods --- p.65 / Chapter 2.6 --- Genomic subtraction --- p.70 / Chapter 2.7 --- Search for species-specific markers from the subtraction library --- p.74 / Chapter 2.8 --- Gas chromatography- mass spectrometry --- p.74 / Chapter 2.9 --- GC-MS chemometric analysis --- p.75 / Chapter Chapter 3. --- Authentication of Aconitum by DNA Sequencing --- p.76 / Chapter 3.1 --- Introduction --- p.76 / Chapter 3.2 --- Methods --- p.77 / Chapter 3.3 --- Results - 5S spacer --- p.77 / Chapter 3.3.1 --- Sequence information --- p.77 / Chapter 3.3.2 --- Sequence similarity --- p.78 / Chapter 3.3.3 --- Phylogram study --- p.81 / Chapter 3.4 --- Results -psbA-trnH --- p.85 / Chapter 3.4.1 --- Sequence information --- p.85 / Chapter 3.4.2 --- Sequence similarity --- p.85 / Chapter 3.4.3 --- Phylogram study --- p.87 / Chapter 3.5 --- Discussion --- p.91 / Chapter 3.5.1 --- Overview of nuclear ribosomal 5S spacer --- p.91 / Chapter 3.5.2 --- Extensive polymorphism of 5S spacer --- p.91 / Chapter 3.5.3 --- Distribution of samples in the phylograms constructed by 5S spacer --- p.93 / Chapter 3.5.4 --- Utility of 5S spacer for authentication --- p.94 / Chapter 3.5.5 --- Overview of psbA-trnH spacer --- p.94 / Chapter 3.5.6 --- Distribution of samples in the phylograms constructed by psbA-trnH spacer --- p.95 / Chapter 3.5.7 --- A distinctive region of inversion --- p.96 / Chapter 3.5.8 --- Utility of psbA-trnH for authentication --- p.97 / Chapter Chapter 4. --- Screening for Novel Markers for Authentication of Aconitum --- p.98 / Chapter 4.1 --- Introduction --- p.98 / Chapter 4.2 --- Methods --- p.99 / Chapter 4.3 --- Results - subtracted clones --- p.99 / Chapter 4.4 --- Results - SSH6 --- p.104 / Chapter 4.4.1 --- Sequence information --- p.104 / Chapter 4.4.2 --- Sequence similarity --- p.105 / Chapter 4.5 --- Results-SSH15 --- p.107 / Chapter 4.5.1 --- Sequence information --- p.107 / Chapter 4.5.2 --- Sequence similarity --- p.107 / Chapter 4.5.3 --- Phylogram study --- p.109 / Chapter 4.6 --- Results-SSH45 --- p.113 / Chapter 4.6.1 --- Sequence information --- p.113 / Chapter 4.6.2 --- Sequence similarity --- p.113 / Chapter 4.6.3 --- Phylogram study --- p.115 / Chapter 4.7 --- Discussion --- p.119 / Chapter 4.7.1 --- Utility of subtraction in screening markers --- p.119 / Chapter 4.7.2 --- SSH6 --- p.121 / Chapter 4.7.3 --- SSH15 --- p.122 / Chapter 4.7.4 --- SSH45 --- p.123 / Chapter 4.7.5 --- Hybridization in Aconitum --- p.124 / Chapter 4.7.6 --- Inferring species identities of samples from the market --- p.126 / Chapter 4.8 --- Conclusion --- p.128 / Chapter Chapter 5. --- Assessment of Aucklandia lappa and Related Species by GC-MS --- p.129 / Chapter 5.1 --- Introduction --- p.129 / Chapter 5.2 --- Methods --- p.130 / Chapter 5.3 --- Results --- p.130 / Chapter 5.3.1 --- Extraction of essential oil --- p.130 / Chapter 5.3.2 --- GC-MS analysis --- p.131 / Chapter 5.3.3 --- Peak alignment and hierarchical cluster analysis --- p.133 / Chapter 5.3.4 --- Purification of chemical markers from Aucklandia lappa --- p.148 / Chapter 5.3.5 --- Standardization of the purified chemical markers --- p.148 / Chapter 5.3.6 --- Quantitative analysis of chemical markers --- p.152 / Chapter 5.4 --- Discussion --- p.154 / Chapter 5.4.1 --- Analysis of chemical composition --- p.154 / Chapter 5.4.2 --- A comparison on chemometric methods --- p.154 / Chapter 5.4.3 --- Similarity of chemical profiles --- p.156 / Chapter 5.4.4 --- Dendrogram analysis --- p.157 / Chapter 5.4.5 --- Utility of GC-MS in authentication of A. lappa and related species --- p.159 / Chapter 5.4.6 --- Limitations --- p.159 / Chapter 5.4.7 --- Comparison with molecular data --- p.161 / Chapter 5.4.8 --- Contents of dehydrocostuslactone and costunolide --- p.163 / Chapter 5.4.9 --- Locality study --- p.164 / Chapter 5.5 --- Conclusion --- p.165 / Chapter Chapter 6. --- General Discussion --- p.167 / Chapter 6.1 --- DNA sequencing --- p.168 / Chapter 6.2 --- Genomic subtraction --- p.169 / Chapter 6.3 --- Future work on molecular authentication --- p.170 / Chapter 6.4 --- Future work on authentication of Aconitum --- p.170 / Chapter 6.5 --- Gas chromatography- mass spectrometry --- p.171 / Chapter 6.6 --- Future work on authentication by GC-MS --- p.172 / Chapter 6.7 --- Future work on authentication of Aucklandia lappa and related species … --- p.173 / References --- p.174 / Appendix A. Sequence Alignment of 5S Spacer from Aconitum Species --- p.183 / Appendix B. Sequence Alignment of psbA- trnH Spacer from Aconitum Species --- p.188 / Appendix C. Sequences of Subtracted Clones from Aconitum --- p.191 / Appendix D. Sequence Alignment of SSH6 from Aconitum Species --- p.194 / Appendix E. Sequence Alignment of SSH15 from Aconitum Species --- p.195 / Appendix F. Sequence Alignment of SSH45 from Aconitum Species --- p.200 / Appendix G. Gas Chromatograms of Essential Oil Extracts of Aucklandia lappa and Related Species --- p.202
|
66 |
川芎活性成分提取工藝及品質評價方法研究 / Study on the technology of extraction of the bio-active constituents and the method of quality control of Rhizoma chuanxiong汪潛 January 2004 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
67 |
歐盟植物藥標準及其對中國植物藥出口的影響 / European Union herbal drug standards and its impact on the import from China祁悅 January 2008 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
68 |
輔料聯用固體分散技術在丹參提取物多組分釋放中的應用及複方丹參片的製備 / Application of solid dispersion with combined carriers on the in-vitro release of multi-components from Danshen extract and preparation of Fufang Danshen tablets熊秀莉 January 2010 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
69 |
不同產地何首烏水提物的化學成分研究 / Chemical study of water extract from Polygonum multiflrom Thunb in China韓東岐 January 2011 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
70 |
淫羊藿苷元納米混懸液的製備、表徵、藥動學和抗骨質疏鬆活性的評價 / Preparation, characterization, pharmacokinetics and anti-osteoporosis activity evaluations of icaritin nanosuspension李妍 January 2011 (has links)
University of Macau / Institute of Chinese Medical Sciences
|
Page generated in 0.0819 seconds