• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The genetic and molecular basis of melanism in the grey squirrel (Sciurus carolinensis)

McRobie, Helen R. January 2014 (has links)
The grey squirrel (Sciurus carolinensis) has wildtype and melanic (dark) colour morphs. Melanism is associated with variations in the melanocortin-1 receptor (MC1R) gene in a number of species. The MC1R protein is a G-protein coupled receptor, predominantly expressed in melanocytes, where it is a key regulator of pigment production. To investigate the genetic and molecular basis of melanism, the MC1R genes of the wildtype and melanic grey squirrel were sequenced. The wildtype (MC1R-wt) and melanic (MC1RΔ24) variants of the MC1R were then functionally characterised in a cell-based assay. The MC1R gene of the grey squirrel was found to have a 24 base pair (bp) deletion associated with melanism. The MC1R is typically activated by its agonist, the alpha-melanocyte stimulating hormone (α-MSH), which stimulates dark pigment production by raising intracellular cAMP levels. Conversely, the MC1R is inactivated by its inverse agonist, the agouti signalling protein (ASIP), which stops dark pigment production by lowering intracellular cAMP levels. To investigate the effects that the 24 bp deletion have on receptor function, MC1R-wt and MC1RΔ24 genes were transfected into HEK293 cells. Cells expressing either MC1R-wt or MC1RΔ24 were stimulated with α-MSH or ASIP and intracellular cAMP levels were measured. Unstimulated MC1RΔ24 cells showed higher basal activity than the MC1R-wt cells. Both MC1R-wt and MC1RΔ24 cells responded to α-MSH with a concentration-dependent increase in intracellular cAMP. However, while the MC1Rwt cells responded to ASIP with a concentration-dependent decrease in intracellular cAMP, MC1RΔ24 cells responded with an increase in cAMP. Melanism in the grey squirrel is associated with a 24 bp deletion in the MC1R. Cells expressing MC1RΔ24 have higher basal levels of cAMP than MC1R-wt cells. ASIP acts as an inverse agonist to the MC1R-wt but as an agonist to the MC1RΔ24. As MC1RΔ24 cells have higher levels of cAMP, and higher levels of cAMP lead to dark pigment production, the 24 bp deletion is the likely molecular cause of melanism in the grey squirrel.
2

The Melanocortin System: Structure Activity Relationships of Alpha-N-Methylated MT-II Analogues and Mutation Studies of Human Melanocortin Receptor Subtypes 1 and 4

Dedek, Matthew Milan January 2007 (has links)
The melanocortin system regulates various physiological processes including feeding behavior, sexual function, skin pigmentation and photoprotection via five G-protein coupled receptors and several endogenous ligands. There is a need for selective and potent ligands to the human melanocortin receptors (hMCRs) that can chemically resolve these various functions. This thesis presents three studies aimed at refining the understanding of the structural differences between binding pockets of the hMCR subtypes. In the first study α-N-methylated analogues of the non-selective agonist, MT-II, are evaluated for their in vitro function. This study produced the most potent hMC1R selective agonist to date. The following two studies examine the effects of mutations on the biological activity of melanocortin receptor subtypes 1 and 4. Much of the mutation study data is preliminary and requires a demonstration of reproducibility.
3

PHARMACOLOGIC INDUCTION OF THE MELANOCOTIN 1 RECEPTOR (MC1R) PATHWAY PROVIDES PROTECTION AGAINST SUNBURN AND ENHANCES EXPRESSION OF ANTIOXIDANT ENZYMES IN THE SKIN

Amaro-Ortiz, Alexandra 01 January 2015 (has links)
The inability to tan properly after sun exposure strongly correlates with increased incidence of skin cancer. The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled cell surface receptor found on epidermal melanocytes that transmits pro-survival and pro-differentiation signals mediated by the second messenger cAMP. Humans carrying loss-of-function polymorphisms in MC1R signaling exhibit higher incidences of skin cancers including melanoma. This study focused on the physiologic effects of topical application of forskolin, an adenylate cyclase activator, in extension (Mc1re/e) K14-SCF animals, which model the fair-skinned UV-sensitive human. Twice daily application of the drug promoted accelerated pigmentation, increased skin darkening due to epidermal deposition of melanin pigment, and induced epidermal melanin, which protected the skin against UV injury as judged by “minimal erythematous dose” (MED). Moreover, MC1R signaling regulated the expression of antioxidant enzymes at the transcriptional level. The human melanoma cell line A375, known to harbor a loss-of-function signaling mutation in MC1R, was used to determine effects of cAMP stimulation on the expression of antioxidant enzymes. We observed increases in expression of genes that control the biosynthesis and regulation of glutathione including the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), glutathione peroxidase, GPX, and glutathione reductase GSR. In addition, there is an increase in manganese superoxide dismutase (MnSOD) at the protein level. There was accumulation of MnSOD in the mitochondria after pharmacologic induction of cAMP with forskolin. Addition of the oxidative agent H2O2 enhanced the expression of MnSOD at the protein level as early as one hour after MC1R stimulation. Oxygen consumption rate on mitochondria was measured using Seahorse analysis; pharmacologic activation of MC1R/cAMP signaling did not affect mitochondrial metabolism. In addition, topical application of a crude extract of Solidago inhibited UV-induced inflammation in K14-SCF mice. Several UV-induced cytokines, including TNF-α, were down-regulated at the transcriptional level after topical application of Solidago extract. Together, these results indicate that MC1R signaling protects melanocytes from UV damage by regulating antioxidant enzyme expression and suggest that pharmacologic cAMP induction may be a useful preventive mechanism against UV-mediated skin sunburn and oxidative injury.
4

Molecular mechanism of MC1R association with skin cancer risk phenotypes

Ms Kimberley Beaumont Unknown Date (has links)
The melanocortin-1 receptor (MC1R) is a G-protein coupled receptor (GPCR) expressed on the surface of the melanocyte. MC1R activation after UV exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing protection from UV induced DNA damage. MC1R activation has also recently been linked to DNA repair. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, poor tanning and increased risk of melanoma and non-melanoma skin cancer. These MC1R variant receptors were thought to be loss of function, however the type of defect and the extent of the loss of function for individual variants was relatively unknown before the commencement of this PhD project. Many GPCR mutant proteins are intracellularly retained, resulting in a loss of signalling ability. To determine if this was the case for MC1R variant receptors, the localisation of the wild type and variant MC1R protein was investigated using immunofluorescence and radio-ligand binding on transfected melanocytic cells as well as primary melanocyte strains. For the first time, several MC1R variants including V60L, R151C, I155T, R160W and R163Q, were shown to have reduced cell surface expression compared to wild type MC1R. cAMP assays were used to determine the signalling ability of activated wild type and variant MC1R, importantly, variant receptors with reduced cell surface expression showed corresponding impairment in cAMP signalling. In contrast, the R142H and D294H variants, which have normal cell surface expression but significantly impaired cAMP signalling, are thought to have a defect in G-protein coupling. Some MC1R variants were found to have dominant negative activity on the wild type receptor in co-expression studies, this result may explain the MC1R heterozygote effect on human pigmentation phenotypes. This dominant negative effect resulted in either reduced wild type cell surface expression or reduced G-protein coupling and may be mediated by receptor dimerisation. In order to validate the in vitro studies, comparison of variant receptor characteristics with skin and hair colour data of individuals both homozygous and heterozygous for MC1R variant alleles was performed. This revealed parallels between variant MC1R cell surface expression, functional ability, dominant negative activity and the strength of the effects of variant alleles on human pigmentation. From the in vitro functional studies, it was clear that most variant receptors retained some signaling ability, although the relative abilities varied. An important unanswered question in the literature was whether the phenotype of carriers of the high penetrance MC1R variant alleles was actually representative of complete loss of function for MC1R. Due to the rarity of MC1R null alleles they had only previously been found in the heterozygous state, however we described the phenotype of one individual compound heterozygous for two frameshift mutations resulting in an individual unable to produce any functional MC1R protein. Phenotypic analysis indicated that red hair and fair skin is found in the absence of MC1R. Finally, preliminary studies using low temperature, chemical or pharmacological chaperones indicated that the cell surface expression of some MC1R variants could be rescued in cell transfection experiments. This resulted in a restoration of signaling ability after stimulation with agonist. These studies into the localization and function of MC1R variants have contributed to a greater understanding of the molecular mechanism underlying the association of MC1R with skin cancer risk phenotypes, and may lead to future drug based therapies that are able to rescue the function of MC1R variants that are intracellularly retained.
5

Genetic basis of species differentiation in Sulawesi macaques, Indonesia / インドネシアのスラウェシ島固有のマカクにおける種分化の遺伝的基盤

Yan, Xiaochan 26 September 2022 (has links)
付記する学位プログラム名: 霊長類学・ワイルドライフサイエンス・リーディング大学院 / 京都大学 / 新制・課程博士 / 博士(理学) / 甲第24185号 / 理博第4876号 / 新制||理||1698(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 今井 啓雄, 教授 古賀 章彦, 准教授 Huffman Michael Alan / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
6

UV-Induced DNA Damage and Repair: The Role of Melanin and the MC1R Gene

Hauser, Jennifer E. 03 April 2006 (has links)
No description available.
7

Regulation of UV-Protective Pathways Downstream of the Melanocortin 1 Receptor in Melanocytes

Wolf Horrell, Erin M. 01 January 2016 (has links)
Malignant cutaneous melanoma is the deadliest form of skin cancer, and a majority of melanoma diagnoses are a result of exposure to ultraviolet (UV) radiation. UV radiation causes DNA damage, which if not repaired correctly via nucleotide excision repair (NER) can result in mutations and melanomagenesis. The melanocortin 1 receptor (MC1R) is a Gs protein coupled receptor located on melanocyte plasma membranes and is involved in protecting the skin from UV induced damage. MC1R signaling results in the activation of two protective pathways: 1) induction of eumelanin synthesis downstream of micropthalmia-associated transcription factor (MITF) and 2) acceleration of NER downstream of ataxia telangiectaseia mutated and Rad3 related (ATR). MC1R signaling, however, also promotes melanocyte proliferation, therefore, the activation of the MC1R pathway must be regulated. The overall hypothesis of this dissertation is that the pathways downstream of MC1R can be manipulated to protect against UV induced damage. Chapter 2 investigates the regulation of the MC1R neutral antagonist human β-defensin 3 (βD3). UV damage did not induce βD3 mRNA expression in ex vivo human skin explants. The induction of βD3 expression instead correlated with inflammatory cytokines including TNF. Chapter 3 investigates the interdependence and cross talk between the two protective pathways downstream of MC1R. We directly tested the effect of MITF on the acceleration of NER and the effect of ATR on the induction of eumelanin synthesis following MC1R activation. MITF was not required for the acceleration of NER as mediated by ATR, however, the induction of transcription of enzymes involved in eumelanin synthesis was dependent upon ATR kinase activity. Finally, Chapter 4 investigates the mechanism by which MC1R promoted proliferation and whether the two UV protective pathways downstream of MC1R could be selectively activated without the risk of melanocyte proliferation. MC1R signaling resulted in activation of the mechanistic target of rapamycin complex 1 (mTORC1), a major regulator of cell growth and proliferation. Inhibition of mTORC1 signaling via rapamycin prevented MC1R induced proliferation in vitro. Rapamycin, however, did not prevent MC1R induced eumelanin synthesis or the acceleration of NER in vitro or in vivo suggesting it is possible to selectively activate the beneficial signaling pathways without the risk of melanocyte proliferation. The results of this dissertation suggest that MC1R signaling could be augmented in individuals to prevent UV induced damage.
8

Local Anesthetic Efficacy of the Inferior Alveolar Nerve Block in Red-haired Females

Droll, Brock A. 15 December 2011 (has links)
No description available.

Page generated in 0.0674 seconds