• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 320
  • 57
  • 51
  • 51
  • 26
  • 19
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • Tagged with
  • 726
  • 189
  • 160
  • 112
  • 109
  • 82
  • 70
  • 68
  • 66
  • 65
  • 63
  • 62
  • 60
  • 58
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Light Weight and High Strength Materials Made of Recycled Steel and Aluminum

Nounezi, Thomas January 2012 (has links)
Recycling has proven not only to address today’s economical, environmental and social issues, but also to be imperative for the sustainability of human technology. The current thesis has investigated the feasibility of a new philosophy for Recycling (Alloying-Recycling) using steel 1020 and aluminum 6061T6. The study was limited to the metallurgical aspects only and has highlighted the potential of recycled alloys made of recycled aluminum and steel to exhibit substantially increased wear resistance and strength-to-weight ratio as compared to initial primary materials. Three alloy-mixtures are considered: TN3 (5wt% 1020 +95wt% 6061T6); TN5 (0.7wt% 1020 + 99.3wt% 6061T6); and TN4 (10wt% 6061T6 + 90wt% 1020). A Tucker induction power supply system (3kW; 135-400 kHz) is used to melt the alloy mixtures for casting in graphite crucibles. Heat treatment of the cast samples is done using a radiation box furnace. Microscopy, Vickers hardness and pin-on-disc abrasive wear tests are performed. Casting destroyed the initial microstructures of the alloys leading to a hardness reduction in the as-cast and solution heat-treated aluminum rich samples to 60 Hv from 140 Hv. Ageing slightly increased the hardness of the cast samples and provided a wear resistance two times higher than that of the initial 6061T6 material. On the steel rich side, the hardness of the as-cast TN4 was 480 Hv, which is more than twice as high as the initial hardness of steel 1020 of 202 Hv; this hints to strong internal and residual stress, probably martensite formation during fast cooling following casting. Solution heat treatment lowered the hardness to the original value of steel 1020, but provided about ten (10) times higher wear resistance; this suggests higher ductility and toughness of normalised TN4 as compared to 1020. In addition, TN4 exhibits about 25% weight reduction as compared to 1020. The actual recycling process and the effect of non-metallic impurities shall be investigated in future works. Also, the casting and heat treatment processes need to be improved.
152

Melt Initiation and Propagation in Polycrystalline Thin Films

Pan, Wenkai January 2021 (has links)
Melting of elemental solids can be identified and appreciated as a particularly simple example of discontinuous phase transitions involving condensed phases. Motivated, on the one hand, by the need to improve the microstructural quality of laser-crystallized columnar-grained polycrystalline Si films for manufacturing advanced AMOLED displays and, on the other hand, to investigate the fundamental details associated with phase transformations transpiring in condensed systems, this thesis examines the initiation and evolution of melting in polycrystalline thin films. Distilling the essence of the classical nucleation theory and extending its description to address more general cases of phase initiation and evolution, a general thermodynamic method based on capillarity effect is developed and applied to determine the shape of solid/liquid interfaces that are in mechanical equilibrium. We first explicitly identify and build our analysis based on how the shape of solid/liquid interfaces must comply with the contact angle conditions at the junctions and also the property of constant mean curvature. Bi-crystal and tri-crystal models are presented to capture the microstructural features such as junctions and vertices of interfaces in polycrystalline thin films. At each of the potential melt initiating sites, the parameter space of contact angles is divided into domains depending on the shape of the solid/liquid interface that can be established in mechanical equilibrium. Melting initiation mechanisms are subsequently determined based on the permissible shape for each domain. This analysis is further extended to the edges and corners of embedded cubic crystals (with nonidentical contact angles at different faces). Secondly, in order to facilitate the thermodynamic analysis of the melting initiation and interface propagation, we extend our curvature-evolution-centric method to identify and develop what we consider as the central function for discontinuous phase transitions. Specifically, starting with a local governing condition, identifies and builds on two curvatures: ρ^E (𝑉) and ρ* (𝑇). ρ^E (𝑉) captures the evolution of the mean curvature of the solid/liquid interface as a function of liquid volume for the case in which the mechanical equilibrium condition is satisfied, whereas ρ* (𝑇) incorporates the temperature effect on the difference between the volumetric free energy of solid and liquid phases using the corresponding equilibrium mean curvature. We define and identify the interface driving stress function ƒ(𝑉,𝑇)=∂𝐺/∂𝑉=σ(ρ^E (𝑉)-ρ* (𝑇)) of the phase transition as being an important fundamental quantity, which can be directly derived by taking the difference of the two curvature terms. In contrast to the conventional analysis that requires integration of volumetric and interfacial free energy terms over various geometric domains to derive the total free energy as a function of volume for a given temperature, this formation completely disentangles geometry from the thermodynamic aspects of the phase transition and allows them to be treated separately. In addition to providing essentially all relevant thermodynamic information about the phase initiation and evolution, the above method readily permits the use of powerful general-purpose numerical tools to calculate the potentially complex geometry of the solid/liquid and other interfaces and obtain ρ^E (𝑉) directly as the output. Plotting the ρ^E (𝑉) function together with the temperature-dependent iso-curvature line, ρ* (𝑇), unveils the critical thermodynamic information regarding the melting transition at the temperature, such as whether equilibrium points exist, the number of equilibrium points, their stability, and their corresponding volumes. The change of free energy as a function of liquid volume can be derived through integration of the interface driving stress function. The velocity of the solid/liquid interface is simply proportional to the interface driving stress function. The application of this method is demonstrated in both shape-preserving (which we term as isomorphic) and shape-changing (which we term as non-isomorphic) examples. The analysis and findings presented in this thesis are relevant and useful for understanding discontinuous phase transitions, in general, and can be particularly so for small, confined, and embedded systems that are increasingly being utilized in modern technologies.
153

Nerezové oceli pro kryogenické aplikace zpracované 3D tiskem / Stainless steels for cryogenic applications processed by 3D printing

Grygar, Filip January 2021 (has links)
This thesis deals with properties of austenitic stainless steel 304L processed by SLM technology and tested at room and cryogenics temperatures. Result is description of mechanical properties and microstructure. First step was to develop processing parameters to achieve porosity of prints fell below 0,01 %. Following tensile test showed higher yield and ultimate tensile strength than conventionally fabricated parts, even at temperature -80 °C, but at cost of reduced ductility. Due to deformation and low temperature austenite transformed into martensite. This transformation also occurred in Charpy toughness test, that resulted in ductile to brittle behaviour.
154

Characterising the Behaviour of an Electromagnetic Levitation Cell using Numerical Modelling

Roberts, Suzanne January 2016 (has links)
Experimental investigations of high temperature industrial processes, for example the melting and smelting processes taking place inside furnaces, are complicated by the high temperatures and the chemically reactive environment in which they take place. Fortunately, mathematical models can be used in conjunction with the limited experimental results that are available to gain insight into these high temperature processes. However, mathematical models of high temperature processes require high temperature material properties, which are difficult to measure experimentally since container materials are often unable to withstand high enough temperatures, and sample contamination often occurs. These difficulties can be overcome by employing containerless processing techniques such as electromagnetic levitation melting to allow for characterisation of high temperature material properties. Efficient design of electromagnetic levitation cells is challenging since the effects of changes in coil design, sample size and sample material on levitation force and sample temperature are not yet well understood. In this work a numerical model of the electromagnetic levitation cell is implemented and used to investigate the sensitivity of levitation cell operation to variations in coil design, sample material and sample size. Various levitation cell modelling methods in literature are reviewed and a suitable model is chosen, adapted for the current application, and implemented in Python. The finite volume electromagnetic component of the model is derived from Maxwell’s equations, while heat transfer is modelled using a lumped parameter energy balance based on the first law of thermodynamics. The implemented model is verified for a simple case with a known analytical solution, and validated against published experimental results. It is found that a calibrated model can successfully predict the lifting force inside the levitation cell, as well as the sample temperature at low coil currents. The validated model is used to characterise the operation of a levitation cell for a number of different sample materials and sample sizes, and for variations in coil geometry and coil current. The model can be used in this way to investigate a variety of cases and hence to support experimental levitation cell design. Based on model results, a number of operating procedure recommendations are also made. / Dissertation (MEng)--University of Pretoria, 2016. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
155

Vysokotlaké tavení a jeho vztah ke granulitové metamorfóze: implikace pro vznik vysokotlakých granulitů Českého Masívu, centrální Evropa. / High-pressure partial melting and its relationship to the granulite facies metamorphism: Implications for the origin of felsic high-PT granulites in the Bohemian Massif, central Europe

Nahodilová, Radmila January 2011 (has links)
Felsic granulites from the Kutná Hora complex in the Moldanubian zone of central Europe preserve mineral assemblage that record transition from early eclogite to granulite facies conditions, and exhibit discordant leucocratic veining, which is interpreted as evidence for melt loss during the decompression path. The granulites are layered and consist of variables proportions of quartz, ternary feldspar, garnet, biotite, kyanite, and rutile. In the mesocratic layers, garnet grains show relatively high Ca contents corresponding to 28-41 mol. % grossular end member. They have remarkably flat compositional profiles in their cores but their rims exhibit an increase in pyrope and a decrease in grossular and almandine components. In contrast, garnets from the leucocratic layers have relatively low Ca contents (15-26 mol. % grossular) that further decrease towards the rims. In addition to modelling of pressure-temperature pseudosections, compositions of garnet core composition, garnet rim- ternary feldspar-kyanite-quartz equilibrium, ternary feldspar composition, and the garnet- biotite equilibrium provide five constraints that were used to constrain the pressure- temperature path from eclogite through the granulite and amphibolite facies. In both layers, garnet cores grew during omphacite and phengite dehydration...
156

Povrchová deformace jako důsledek tání v ledové slupce Europy / Surface manifestation of melting within the ice shell of Europa

Vach, Dominik January 2019 (has links)
One of the most interesting extraterrestrial bodies in the Solar System is Europa, the icy satellite of Jupiter. This icy moon might have a sufficiently hospitable environment which could be harbouring life in the subsurface ocean deep under its icy crust. The thesis thoroughly examines the generation process of one of the surface formations called chaotic terrains. These huge areas of ice disruptions which uniquely characterize Europa's surface might play a significant role in the understanding of the inner structure of the moon. The latest research assumes the chaotic terrains form above liquid water lenses perched relatively shallow in the ice shell, however, no numerical simulations have been performed to confirm this theory. The goal of the thesis is to create a model which would validate the theory and explain the formation process of the chaotic terrains. The thesis runs several simulations, and our results suggest these water lenses and the process in the mantle might play a key role in the chaotic terrains formation.
157

2-D Melting in Excimer-Laser Irradiated Polycrystalline Silicon Films

Wong, Vernon January 2021 (has links)
This thesis examines the excimer-laser-induced melting of ELA-prepared silicon films using in situ transient reflectance and transmission analysis. The results clearly show that these polycrystalline films, which consist of columnar grains in contact with SiO₂, can melt in a largely and remarkably 2-D manner. Based on the presently and previously obtained experimental results, as well as considering the thermal, thermodynamic, and kinetic aspects of the melting-transition-relevant details, we suggest a model that consists of grain-boundary-initiated melting, followed by lateral melting proceeding into the transiently superheated interior of the grains. Additional experiments are performed which demonstrate how this 2-D melting behavior at least stems intrinsically from the presence in the material of melt-prone grain boundaries and superheating-permitting Si/SiO₂ interfaces. Next, the phase and temperature evolutions of the irradiated films are investigated using a numerical simulation program, which incorporates key material, thermodynamic, and kinetic parameters. We find that the center portion of the grains during (partial) melting (1) corresponds to, especially at the SiO₂-passivated surface, the hottest regions of the films during rapid heating, and (2) remains entirely solid throughout the thickness of the film, as the maximum temperature sustained in these unmelted solids remains well below the superheating limit of silicon at the Si/SiO₂ interface. Lastly, we discuss, and substantiate with results obtained from numerical simulations, the role that the manifested dimensionality of melting plays in dictating the efficiency with which the ELA crystallization technique can generate microstructurally uniform polycrystalline materials. The current discovery regarding the 2-D nature of melting should be recognized and appreciated as a critical process-enabling element for ELA, as the scenario permits microstructure evolution of the grains to take place in an effective manner.
158

Thermodynamic Parameters Relative to the Melting of Cellulose Tributyrate

Piana, Umberto, Pizzoli, Maria, Buchanan, Charles M. 01 January 1995 (has links)
Wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (d.s.c.) measurements were made on cellulose tributyrate (CTB). In one case, CTB precipitated from solution in powdered form was annealed at different temperatures. In a second case, CTB was isothermally crystallized either from the melt or from the glass. Samples annealed from the powder showed higher crystallinity with respect to samples crystallized from the glassy or molten state. By applying the Hoffman-Weeks method to the melting temperatures of isothermally crystallized samples, a value of 192 °C for the equilibrium melting temperature of CTB was obtained. From calorimetric results on samples with different crystalline/amorphous ratio, a linear dependence between ΔHm and ΔCp was found, whose extrapolation gave 34.5 J g-1 for the equilibrium heat of fusion ΔHm°. A correlation between the experimental melting enthalpy arising from d.s.c. measurements and the percentage crystallinity estimated by WAXS measurements was attempted. In this manner a second, surprisingly high, value (67 J g-1) for ΔHm° was found. The difference between the values obtained from the two methods is believed to be due to the presence of macroscopic order in the amorphous phase, which influences the value of the WAXS crystallinity.
159

Investigation of Surface Melting in West Antarctica

Zou, Xun, zou January 2020 (has links)
No description available.
160

Production of ferro-niobium in the Plasmacan furnace

Hilborn, Monica Maria January 1988 (has links)
No description available.

Page generated in 0.0433 seconds