• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • Tagged with
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extensive biological nutrients removal in membrane bioreactors mechanisms, influences and optimisations

Vocks, Martin January 2008 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2008
2

Beitrag zur Erhöhung des Reinigungsvermögens und der Flexibilität von Biofilmreaktoren (Festbett, Schwebebett, Filter) /

Brinke-Seiferth, Stephan. January 1999 (has links)
Zugl.: Hamburg-Harburg, Techn. Universiẗat, Diss., 1999. / Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 1999.
3

Enzymatic production of sugar fatty acid esters

Yan, Youchun. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
4

Untersuchungen zum mikrobiellen Abbau von chlorierten Aromaten in einem Suspensions-Membranreaktor

Kappler, Axel. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Bremen.
5

Potential von Membranbioreaktoren zur Entfernung von polaren persistenten Spurenstoffen aus Kommunalabwasser

Weiss, Stefan January 2007 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2007
6

Modellierung und Simulation eines aeroben Membranbioreaktors im Querstrombetrieb zur Abwasseraufbereitung /

Gehlert, Gunther. January 2005 (has links)
Techn. Universiẗat, Diss., 2005--Hamburg-Harburg.
7

Utredning av långsam denitrifikation på MBR- pilotanläggning / Investigation of slow denitrification at MBR pilot plant

Giannoglou, Theodosis January 2021 (has links)
Sydvästra stockholmsregionens va-verksaktiebolag – Syvab äger och driver Himmerfjärdsverket som just nu genomgår en storskalig om- och utbyggnad för att kunna hantera både ökad belastning och de strängare reningskrav som förväntas i framtiden. Reningsverket kommer att byggas om till en MBR-process, d.v.s. MembranBioReaktor. I samband med det här har en MBR-pilotanläggning tagits i drift. I pilotanläggningen fördelas avloppsvattnet i tre på varandra följande s.k. kaskader som vardera är utrustade för fullständig kväverening.  Syftet med detta projekt var att undersöka varför det observerats lägre denitrifikationshastigheter i pilotanläggningen jämfört med dimensionerande data vid tillsats av extern kolkälla (metanol). För att undersöka detta utfördes först en litteraturstudie för att få förståelse för processerna samt vilka parametrar som påverkar denitrifikationen.  Därefter gjordes tre olika typer av försök. Det ena var efterdenitrifikationsförsök som gjordes för att följa upp den maximala denitrifikationshastigheten i slammet. Det andra testet undersökte det linjära sambandet för denitrifikationshastighetens temperaturberoende. Slutligen gjordes kväveprofiler för att beräkna momentana denitrifikationshastigheter i processen genom att ställa upp massbalanser över de analyserade parametrarna. Data från resultaten utvärderades tillsammans med tidigare insamlade data från pilotanläggningen.  Resultaten från både efterdenitrifikationsförsöken och kväveprofilerna visade att denitrifikationshastigheten var lite högre än tidigare försök som gjorts (maximalt uppnåddes 2,0 mg NO3/gVSS, h) men fortfarande lägre än den dimensionerande hastigheten på 3,5 mg NO3/gVSS, h. Enligt temperaturförsöken som gjordes ökar denitrifikationshastigheten med 10,3% per °C.  De högre hastigheterna tros till viss del bero på högre temperatur men främst på lägre syrehalter i processen vilket kan ha förändrat bakteriesammansättningen i slammet till fördel för denitrifikationen. Utifrån försöken som gjorts verkar den dimensionerande denitrifikationshastigheten vara orimligt hög. / Sydvästra stockholmsregionens va-verksaktiebolag – Syvab owns and operates the Himmerfjärdsverket plant, which is currently undergoing a large-scale refurbishment and expansion to cope with both increased loadings and the stricter treatment requirements expected in the future. The plant will be converted to an MBR process, i.e. Membrane BioReactor. In conjunction with this, an MBR pilot plant has been commissioned. In the pilot plant, the wastewater is distributed in three successive cascades, each equipped for complete nitrogen removal.  The aim of this project was to investigate why lower denitrification rates were observed in the pilot plant compared to the design data when an external carbon source (methanol) was added. To investigate this, a literature study was first carried out to gain an understanding of the processes and the parameters affecting denitrification.  Thereafter three different types of experiments were performed. One was a post- denitrification experiment to monitor the maximum denitrification rate of the sludge. The second test examined the linear relationship for the temperature dependence of the denitrification rate. Finally, nitrogen profiles were made to calculate denitrification rates in the process by setting up mass balances over the analysed parameters. The data from the results were then evaluated together with previously collected data from the pilot plant.  The results from the post-denitrification experiments and the nitrogen profiles showed that the denitrification rate was faster than in the previously performed experiment (maximum of 2,0 mg NO3/gVSS, h was achieved) but still lower than the designed rate for the process of 3,5 mg NO3/gVSS, h. According to the temperature experiments performed, the denitrification rate increases by 10.3% per °C.  The faster denitrification rates can be explained partly due to higher temperatures in the process but mainly due to lower oxygen levels in the process which may have altered the bacterial composition of the sludge in favor of denitrification. Based on the experiments carried out, the designed denitrification rate appears to be higher than what can be achieved in the pilot plant.
8

Physiologie nährstofflimitierter Bakterien in Membranbioreaktoren

Keil, Claudia January 2007 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2007
9

Modellierung von Membranbioreaktoren für die Abwasserbehandlung unter Berücksichtigung endokrin wirksamer Substanzen /

Wintgens, Thomas. January 2005 (has links)
Techn. Hochsch., Diss., 2005--Aachen.
10

Livscykelanalys av avloppsreningsverk : En jämförande studie mellan MBR och aktivslammetoden / Life cycle assessment of wastewater treatment plants : A comparative study between MBR and the activated sludge method

Heinonen, Ella January 2023 (has links)
Avloppsreningsverk är en viktig del av vattnets kretslopp och skyddar mottagande miljö från föroreningar i avloppsvattnet. Det finns olika tekniker att rena avloppsvattnet på och denna studie jämför den potentiella miljöpåverkan från MBR och aktivslammetoden ur ett livscykelperspektiv. Utformningen av reningsverken baserar sig på ett inledande designförslag i ett tidigt skede för en framtida utbyggnad av ett avloppsreningsverk på Öland. Reningsverken är designade för biologisk kväve- och fosforrening i kombination med kemisk fosforfällning. Livscykelfaserna som inkluderas är driften samt material för konstruktion och utrustningar. Inventeringsdata har baserats på information från designförslaget, beräkningar, leverantörsinformation, miljövarudeklarationer, erfarenhetsuppskattningar samt litteraturvärden. Resultatet visade att emissioner av lustgas och metan från reningsverkens driftsfas potentiellt är avgörande för jämförelsen av miljöpåverkan. I studien har emissionsfaktorer från IPCC (2019) använts för emissionerna av metan och lustgas. Påverkan från emissioner av dessa växthusgaser utgjorde cirka 80% av påverkan på global uppvärmning samt cirka 99% av påverkan på ozonförlust. Ett viktat värde togs fram för den potentiella miljöpåverkan som visade att emissioner av metan och lustgas från driftsfasen utgör över 50% av påverkan på det viktade singelresultatet, där huvuddelen av påverkan kom från lustgasen. Även små skillnader av dessa utsläpp kan därför påverka jämförelsen. När emissionerna av metan och lustgas antas vara samma för bägge systemen visar resultatet att MBR har högre potentiell påverkan i 15 av 18 miljökategorier till följd av en högre elanvändning vid driften samt användning av kemikalier för membranrengöring. Skillnaden var dock låg för många miljökategorier och det viktade slutpunktsresultatet visade att singelpoängen var relativt lika för bägge systemen. Resultatet var därför känsligt för antaganden och modelleringsval och modellering med membranrengöringskemikalien citronsyra tillverkat i Europa i stället för ett globalt medelvärde för tillverkningsorter, resulterade i att MBR fick lägre potentiell miljöpåverkan i ytterligare 5 kategorier, bland annat global uppvärmning. En användning av kompaktare membran eller inköp av citronsyra från Europa ledde även till att MBR i stället fick ett lägre viktat singelpoäng än aktivslammetoden och därmed en lägre potentiell miljöpåverkan. Bidrager från konstruktionsfasen var relativt hög i de flesta miljökategorier och bidrog med mellan 10–15 % i det viktade singelresultatet. Påverkan från grundläggning och eventuella utomhusbyggnader var inte med i analysen vilket gör att inkludering av dessa kan öka bidraget från konstruktionen ytterligare. Vidare så var inte eventuella reningsskillnader av substanser så som kväve, organiska ämnen, metaller och mikroföroreningar med i analysen. Eventuella reningsskillnader kan leda till ändrade resultat i den jämförande miljöbedömningen. En mer tillförlitlig jämförelse för miljöpåverkan mellan avloppsreningsverk kräver därför närmare information gällande skillnader i reningsgrad av avloppsvattnet samt skillnader för emissioner av lustgas och metan från reningsverken för att i högre grad kunna fånga avvägningar mellan skapad kontra undviken miljöpåverkan och hur det påverkar jämförelsen mellan de studerade systemen. / Wastewater treatment plants are an essential part of the water cycle and protect the receiving environment from pollution in wastewater. There are different techniques to purify wastewater, and this study compares the potential environmental impact of the MBR and the activated sludge method from a life cycle perspective. The study bases the treatment plants' designs on an initial design proposal at an early stage for a future expansion of a sewage treatment plant on Öland. The treatment plants include biological nitrogen and phosphorus purification and chemical phosphorus precipitation. The study includes the operational phase and materials for construction and equipment. Inventory data comes from information from the design proposal, calculations, supplier information, environmental product declarations, experience estimates, and literature values. The result showed that emissions of nitrous oxide and methane from the operational phase of the treatment plants are potentially decisive for comparing environmental impact. This study uses emission factors from the IPCC (2019) for methane and nitrous oxide emissions. The impact from these greenhouse gas emissions accounted for approximately 80% of the impact of global warming and about 99% of the impact on stratospheric ozone depletion. A weighted value was produced for the potential environmental impact, which showed that methane and nitrous oxide emissions from the operational phase constitute over 50% of the impact on the weighted single score result, with the majority of the impact coming from the nitrous oxide. Even minor differences in these emissions can therefore affect the comparison. When methane and nitrous oxide emissions are assumed to be the same for both systems, the result shows that the MBR has a higher potential impact in 15 out of 18 environmental categories due to higher electricity consumption during operation and the use of chemicals for membrane cleaning. However, the difference was low for many environmental categories, and the weighted endpoint result showed that the single score values were relatively similar for both systems. The result was, therefore, sensitive to assumptions and modeling choices, and modeling with the membrane cleaning chemical citric acid manufactured in Europe instead of a global average for manufacturing locations resulted in MBR having a lower potential environmental impact in five additional categories, including global warming. Using more compact membranes or purchasing citric acid from Europe also led to MBR receiving a lower weighted single score than the activated sludge method and, thus, a lower potential environmental impact. Contributors from the construction phase were relatively high in most environmental categories, contributing 10–15% of the weighted single score result. The impact of foundation laying and any outdoor buildings was not included in the analysis, which means that including these can increase the contribution from the construction phase even further. Furthermore, the study did not include possible purification differences of substances such as nitrogen, organic substances, metals, and micropollutants. Differences in the degree of purification can lead to changed results in the comparative environmental assessment. A more reliable comparison of the environmental impact between wastewater treatment plants, therefore, requires more detailed information regarding differences in the degree of purification of the wastewater and differences in emissions of nitrous oxide and methane from the operation of the plants to be able to better capture trade-offs between created versus avoided environmental impact and how it affects the comparison between the studied systems.

Page generated in 0.0819 seconds