• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hétérogénéité des membranes lipidiques et propriétés mécaniques : des bicouches modèles aux membranes des globules gras du lait / Heterogeneity of biological membranes and mechanical properties : lipid bilayers model of the milk fat globules membranes

Etthakafy, Oumaima 25 October 2017 (has links)
Les globules gras du lait sont entourés d’une membrane biologique extrêmement complexe en composition et en structure, appelée MFGM (milk fat globule membrane). L’investigation de cette membrane, in situ dans le lait, par microscopie confocale nous suggère que les lipides polaires à haute température de transition de phase (Tm) forment des domaines en phase gel ou liquide ordonné, dispersés dans une phase continue fluide. Sur la base de cette observation, ce projet vise à comprendre en quoi la composition en lipides polaires laitiers et leur état de phase peuvent moduler les propriétés élastiques de la MFGM, en vue d’une meilleure maîtrise de la stabilité des globules gras en industrie laitière.L’hétérogénéité mécanique générée par la coexistence de différents types de phase a ainsi été caractérisée par spectroscopie de force AFM en utilisant des bicouches de lipides modèles de la membrane réelle, à basse (T<Tm) et haute températures (T>Tm). Pour analyser finement les déterminants de l’élasticité de la membrane, et tenir compte de la courbure, une étude approfondie des effets de l’état de phase et de la composition hétérogène en lipides polaires a été entreprise par spectroscopie de force atomique, en complément d’une analyse structurale par microscopie électronique ou diffraction des rayons X. Nous y avons montré, en particulier, que la présence de molécules de longueur de chaîne acyles et d’insaturation variables rend les membranes de sphingomyéline de lait en phase gel moins rigides qu’attendu, bien que significativement plus rigide qu’une membrane fluide. Cette approc / The milk fat globules are enveloped by a biological membrane, called MFGM, of highly complex composition and structure. Investigation of this membrane, in situ in milk, using confocal microscopy suggested that polar lipids with high transition temperature (Tm) form domains in gel or liquid-ordered phase, dispersed in a continuous fluid phase. From this observation, the aim of this project was to understand how the composition and organization of dairy polar lipids can modulate the elastic properties of the MFGM, in order to better control stability of the fat globules in the dairy industry. The mechanical heterogeneity created by the coexistence of phases was then characterized by AFM force spectroscopy using lipid bilayers models at low (T<Tm) and high temperatures (T>Tm).In order to closely analyze the factors that direct membrane elasticity, force spectroscopy measurements were undertaken on curved liposome membranes, in combination with structural characterization by TEM and SAXS. We showed, in particular, that heterogeneity in acyl chain length and unsaturation made gel-phase milk sphingomyelin membranes less rigid than expected, although more rigid than a fluid phase membrane. This approach was finally applied to native milk fat globules, where mechanical heterogeneity was visible. However, elasticity values were somewhat different from those calculated on model systems, probably because of the presence of membrane proteins.
2

Dynamique non-linéaire et hors-équilibre des membranes lipidiques confinées / Nonlinear and out-of-equilibrium dynamics of confined lipid membranes

Le Goff, Thomas 03 December 2015 (has links)
Les membranes lipidiques auto-assemblées présentent une riche phénoménologie de comportements dynamiques, et sont présentes dans de nombreux systèmes biologiques. Au cours de cette thèse nous avons étudié la dynamique de ces membranes dans des situations de fort confinement par des modèles théoriques simples. Nous nous sommes focalisés sur le cas d'un confinement entre deux murs, en présence d'un potentiel double-puits menant à deux états possibles d'adhésion (sur le mur du haut, ou sur celui du bas). A l'aide de modèles de lubrification, nous avons obtenu une équation différentielle nonlinéaire et nonlocale décrivant l'évolution de la morphologie de la membrane. Nous avons surtout étudié son comportement dans les systèmes bidimensionnels, où la membrane est un objet unidimensionnel. Dans ce cadre, nous avons montré que la rigidité de courbure de la membrane mène à une dynamique différente de la dynamique de mûrissement obtenue habituellement en présence d'une tension de surface. En effet, la membrane atteint rapidement une configuration gelée, qui dépend des conditions initiales. L'arrêt de la dynamique la conséquence d'une interaction oscillante entre les kinks –définis ici comme parois de domaines dans les systèmes unidimensionnels. L'organisation spatiale de la configuration finale peut être contrôlée par la perméabilité des murs : par exemple, si la membrane est initialement plane, et à mi-chemin entre les deux murs, des morphologies désordonnées sont obtenues pour des murs perméables, alors qu'un ordre à longue distance est obtenu dans le cas imperméable. Nous avons de plus montré que différents ingrédients physiques tels qu'une tension de membrane, l'asymétrie du potentiel d'adhésion, ou le bruit thermique sont susceptibles de restaurer le mûrissement, généralement au dessus d'un seul fini. Inspirés par la biolubrification, nous avons par ailleurs étudié l'influence d'un cisaillement imposé par le mouvement des murs. Les simulations montrent une dynamique riche de plusieurs régimes, qui influence la friction effective entre les murs. Pour les faibles taux de cisaillements, nous obtenons une dynamique complexe et chaotique qui engendre du mûrissement, et mène à un comportement thixotrope, où la force décroît avec le temps. Pour des taux de cisaillement modérés et fort, nous obtenons respectivement des solutions stationnaires périodiques ou du chaos spatiotemprel. Dans ces deux régimes, le système est rhéo-fluidifiant / Self-assembled lipid membranes exhibit a rich variety of dynamical behaviors, and are ubiquitous in biology. In this thesis, we report on the study of dynamics of membranes in strong confinement, using simple theoretical models. We focus on the case of confinement between two walls, in the presence of a double-well potential leading to two possible states of adhesion (on the upper or the lower wall). Using a lubrication model, we obtained a nonlinear and nonlocal partial differential equation describing the evolution of the membrane morphology. We have mainly studied the twodimensional case, where the membrane is a one-dimensional object. Within this frame, we have shown that the membrane bending rigidity leads to dynamics that are different from the coarsening behavior obtained usually in the presence of surface tension. Indeed, the membrane reaches a frozen state, which depends on the initial conditions. The freezing of the dynamics is the consequence of the oscillatory interaction between kinks –here defined as domain walls in one-dimensional systems. The spatial organization of the final state can be controlled by the wall permeability : as an example, starting from a plane membrane half-way between the two walls, disordered configurations are obtained for very permeable walls, while long range order is obtained with impermeable walls. In addition, we have shown that different physical ingredients such as membrane tension, potential asymmetry, or thermal noise, can restore coarsening, usually above a finite threshold. Inspired by biolubrication, we have also studied the influence of shear imposed by the motion of the two confining walls. Simulations show a rich behavior with several regimes, which influence the effective friction between the walls. For weak shear rates, we obtain complex and chaotic dynamics, which induce coarsening, leading to a thixotropic behavior, where the force decreases with time. For moderate or large shear rates, we respectively obtain frozen periodic stationary solutions, or spatio-temporal chaos. In these two regimes, the system exhibits shear-thinning
3

Translocation d'acides nucleiques au travers d'une bicouche lipidique : du nanopore au bacteriophage

Chiaruttini, Nicolas 18 November 2010 (has links) (PDF)
Ce travail porte sur l'étude expérimentale de deux mécanismes de translocations d'acides nucléiques au travers d'une membrane lipidique : la translocation, forcée électrophorétiquement, d'oligomères au travers d'un pore d'alpha-hémolysine et la translocation passive d'un ADN génomique hors de la capside du bactériophage T5. La première partie de la thèse porte sur l'ouverture de molécules d'ADN double brin à travers le nanopore d'alpha hémolysine. Les temps de passage individuels de molécules d'ADN à travers le pore sont mesurés expérimentalement en fonction de la séquence, de la longueur et de la force appliquée sur l'ADN. Les distributions obtenues sont confrontées à un modèle décrivant le passage de l'ADN par la diffusion d'une fourche d'ouverture dans un paysage énergétique unidimensionnel, déterminé par la séquence de la molécule. La deuxième partie porte sur un système in vitro reconstituant les étapes initiales d'infection du bactériophage T5. L'interaction de T5 avec son récepteur membranaire FhuA purifié en détergent, génère une séquence d'événements qui conduit à l'éjection du génome viral hors de la capside : (i) fixation du récepteur ; (ii) activation conduisant à l'ouverture d'un canal d'ADN ; (iii) éjection de l'ADN. La dynamique des trois étapes est mesurée à l'aide d'expériences en population et en virus unique. La dernière étape est comparée à un modèle physique qui révèle une dynamique fortement hors d'équilibre à l'initiation de l'éjection. Enfin, FhuA est reconstitué dans des vésicules lipidiques géantes afin de suivre l'éjection par microscopie de fluorescence et par électrophysiologie à travers une membrane lipidique.
4

Les protéines ERM , Interactions entre la membrane cellulaire et le cytosquelette : une approche biomimétique. / Interactions between ERM proteins, cell membrane and cytoskeleton : a biomimetic approach.

Lubart, Quentin 12 December 2016 (has links)
Les protéines ERMs (Ezrine, radixine et moésine) jouent un rôle central in cellulo, dans de nombreux processus cellulaires tels que les infections, la migration et la division cellulaire. Parmi celles-ci, la moésine est plus particulièrement impliquée dans la formation de la synapse immunologique, l’infection virale et bactérienne, et les métastases cancéreuses. D’un point de vue structural, les ERM peuvent être en conformation inactive (replies sur elles-mêmes) ou actives (ouvertes), ce qui permet leur interaction a la fois avec les constituants du cytosquelette (actine et tubuline) via leur domaine C-terminal et la membrane plasmique via leur domaine FERM. La liaison a la membrane plasmique se fait principalement et spécifiquement via un lipide de la famille des phosphoinositides, le phosphatidyl 4,5 bisphosphate (PIP2). De plus, les protéines peuvent être phosphorylées, ce qui contribue à leur ouverture structurale. Cependant, le rôle de la phosphorylation sur les interactions ERM/membrane et ERM/cytosquelette, bien que beaucoup étudié in cellulo, est peu compris au niveau moléculaire.Le but de cette thèse est précisément d’étudier, au niveau moléculaire et à l’aide de systèmes biomimétiques, les interactions entre des protéines recombinantes et des membranes biomimétiques contenant du PIP2. Pour cela, nous avons mis au point des membranes lipidiques sous forme de vésicules unilamellaires (petites ou larges) et de bicouches lipidiques supportées, qui permettent de caractériser les interactions entre protéines et membranes par des techniques biophysiques complémentaires, notamment la cosédimentation quantitative, la microscopie et spectroscopie de fluorescence, et la microbalance à cristal de quartz. Dans une première partie, nous avons étudié le rôle de la double phosphorylation de la moésine (réalisée par mutation sur site spécifique) sur les interactions moésine/membrane biomimétique, en comparaison de la protéine sauvage, les protéines recombinantes et les mutants ayant été produites et purifiées au laboratoire.Nos résultats mettent en évidence une interaction spécifique et coopérative pour le double mutant phosphomimétique alors que cette interaction est simple dans le cas de la protéine sauvage. Dans une seconde partie, nous avons employé les bicouches lipidiques supportées contenant le PIP2 pour étudier les mécanismes molécules d’adsorption de la protéine virale Gag et de ses mutants. Les méthodologies développées dans ce travail de thèse ouvrent des perspectives en biophysique moléculaires car elles sont facilement transposables à l’étude d’autres protéines sur des membranes lipidiques modèles contenant des phosphoinositides.Mots clés: Ezrine-Radixine-Moésine, phosphoinositides, PIP2, interactions protéine-lipide, membrane lipidique biomimétique, protéine virale Gag, cytosquelette. / ERM (ezrin, radixin, moesin) proteins play a central role in cellulo in a large number of physiological and pathological processes, including cell infection, migration and cell division. Among the ERMs, moesin is particularly involved in the formation of the immunological synapse, viral and bacterial infection, and cancer metastasis. From a structural point of view, ERMs can be in inactive (closed) conformation or active (open), which enable them to interact on one side with the cytoskeleton (actin and tubulin) via their C-terminal domain and on the other side with the plasma membrane via their FERM domain. Binding to the plasma membrane is mediated via a specific lipid of the phosphoinositide family, the phosphatidylinositol(4,5)bisphosphate (PIP2). In addition, ERM can be phosphorylated, which contribute to their structural opening. To date, the role of the phosphorylation in ERM/membrane and ERM/cytoskeleton interactions, although widely studied in cellulo, remains poorly understood at the molecular level.The aim of this PhD thesis is precisely to study, at the molecular level and using biomimetic systems, interactions between recombinant proteins and biomimetic membranes containing PIP2. To this end, we have engineered lipid membranes in the form of large and small unilamellar vesicles and supported lipid bilayers. These biomimetic membranes are used to characterize interactions between proteins and membranes by complementary biophysical techniques, notably quantitative cosedimentation, fluorescence microscopy and spectroscopy, and quartz crystal microbalance with dissipation monitoring. In a first part, we studied the role of double phosphorylation on moesin, achieved via a site-specific mutation on threonine residues, on moesin/biomimetic membrane interactions, in comparison to the wild type protein. The recombinant proteins and mutants were produced in our laboratory.Our results show that there is a specific and cooperative interaction for the double phosphomimetic mutant while interactions is 1:1 in the case of the wild type protein. In a second part, we used supported lipid bilayers containing PIP2 to study the molecular adsorption mechanism of the viral protein Gag and of its mutants. The methodologies that were developed in this work open perspectives in molecular biophysics since they are easily adaptable to other proteins on model lipid membranes containing phosphoinositidesKeywords: Ezrin-Radixin-Moesin, phosphoinositides, PIP2, protein/lipid interactions, biomimetic lipid membrane, Gag viral protein, cytoskeleton.
5

Experimental and stimulation analyses of fluorescent solvent relaxation process in biomembranes : Inflence of ions and molecular interpretation of the dye dynamics / Analyse expérimentale et numérique des processus de relaxation de solvant dans une membrane biologique : Rôle des ions et interprétation moléculaire de la dynamique des marqueurs fluorescents

Barucha-Kraszewska, Justyna 31 October 2012 (has links)
De nombreux processus biologiques liés aux membranes cellulaires lipidiques sont encore très mal connus. La présence d'eau et d'ions à l'interface influence les propriétés structurelles et dynamiques de la bicouche lipidique. Les techniques de fluorescence sont très utiles pour étudier les membranes en raison de la grande sensibilité des sondes à leur environnement. Nous avons utilisé la technique de relaxation de solvant (SR) pour explorer l'hydratation et la mobilité de l'eau. Nous avons également réalisé des calculs quantiques (QM) et des dynamiques moléculaires (DM) pour étayer nos expériences. Les résultats SR montrent qu'un petit cation (Na+) est très attiré par la membrane et augmente sa rigidité à l'opposé des cations (NH4+, Cs+) plus gros. Les anions (CI04-, SCN-) s'adsorbent à l'interface plus facilement que Cl-. Ces anions changent la mobilité et l'hydratation des têtes polaires des lipides de la bicouche. Les études SR de la zone hydrophobe de la membrane montrent que les processus de relaxation sont ici très complexes. lis reflètent des processus rapides intramoléculaire (relaxation de torsion, transferts de charge) et des processus intermoléculaires lents. Les calculs QM ont permis de créer les champs de force de trois sondes fluorescentes (Prodan, Laurdan et C-laurdan). Les simulations DM ont permis de déterminer les positions des sondes dans une membrane DOPC. La modélisation reproduit correctement les résultats SR, en particulier les temps de relaxation : de l'ordre de la ps en solvant aqueux et de la ns dans la membrane. Les simulations MD sont complémentaires des méthodes SR et permettent de surveiller le comportement de molécules uniques. / Many biologically important processes and phcnomena in lipid membranes are still not fully understood. The presence of ions and water molœules has a significant influence on the structural and dynamical properties of lipid bilayers. Fluorescent techniques are versatile tools for studying the lipid membranes, because the fluorescence emission is strongly sensitive to dye environment. We have conducted fluorescent solvent relaxation (SR) experiments to explore the hydration and mobility properties in lipid membranes in the presence of different chaotropic ions. We have also carried out Quantum Mechanical (QM) calculations and Molecular Dynamics (MD) simulations for supporting the SR experiments. SR experiments show that small cation (Na+) is attracted to the membrane and increases rigidity ofbilayer, while larger cations (NH/, Cs+) should not. Large anions (CI04·, SCN') adsorl, at the membrane interface more easily than smaller ones (Cl') and significantly change tl!e mobility and hydration of the headgroup region oflipid bilayer. SR study ofhydrophobic part of the membrane show that SR processes are complex there and reflect botl!: faster, intramolecular (torsional relaxation or fonnation of charge transfer state) and slower, intermolecular (SR) relaxation processes. QM calculatiom were used to create force-field for three fluorescent dyes (Prodan, Laurdan and C-laurdan). MD simulations allow detennining position of the dye in the lipid membrane in the ground state and after excitation and reproduce correctly SR timescale- ps in water and ns in the membrane. MD simulations extend the capabilities of SR method and allow observing the behaviour of individual molecules.
6

Assemblage moléculaire d’amphiphiles ioniques induit par une réaction d’appariement ionique générée par un système rédox confiné en surface

Hmam, Ons 04 1900 (has links)
Les membranes cellulaires naturelles sont des structures complexes et posent de nombreux problèmes lorsqu'elles sont étudiées dans leur forme native. Par conséquent, des systèmes modèles lipidiques plus simples sont souhaitables pour étudier les composants des membranes cellulaires et leur interaction avec les molécules biologiques. Immobiliser ces modèles lipidiques sur des surfaces solides métalliques, pour former des bicouches biomimétiques supportées (SLB pour Supported Lipid Bilayer en anglais), est encore plus avantageux grâce leur adaptabilité à de nombreuses techniques de caractérisation de surface, telles que la microscopie de force atomique (AFM), la spectroscopie de résonance des plasmons de surface (SPR), l’électrochimie et les spectroscopies vibrationnelles (IR, Raman). Former ces bicouches lipidiques supportées par fusion des vésicules a toujours été la technique la plus adaptée vue sa simplicité et son efficacité. Cependant, cette technique exige des conditions expérimentales critiques comme la nécessité de surfaces planes lisses et hydrophiles (mica, verre…), des vésicules à base de phospholipides zwitterioniques en phase fluide, une concentration élevée en lipides, et une longue durée d’incubation (>1h). Dans cette thèse, nous visons à développer une nouvelle méthode simple, rapide et polyvalente permettant de former une large gamme de bicouches biomimétiques supportées, de type zwitterionique et anionique, en phase gel et fluide sur un substrat d’or. Cette nouvelle approche consiste en l’utilisation des réactions d’appariement ionique générées par un système rédox confiné en surface pour induire l’assemblage de phospholipides et former la bicouche lipidique. Le premier objectif de cette thèse est d’étudier le comportement électrochimique d’une monocouche auto-assemblée de ferrocényldodécanethiolates (FcC12SAu) en présence de molécules amphiphiles avec des groupes anioniques de types carboxyle (sel d’acide gras) et phosphate (groupes qu’on trouve dans les phospholipides) et une simple chaîne hydrocarbonée. Dans le même contexte, nous viserons également l’utilisation des réactions d’appariement ionique pour induire l’assemblage des surfactants n-alkyl carboxylate et n-alkyl phosphate à l’interface SAM/électrolyte. Le second objectif de ce travail de thèse consiste en l’utilisation du système rédox confiné en surface pour déclencher par appariement ionique l’assemblage des phospholipides (molécules amphiphiles à double chaînes hydrocarbonées) pour former des bicouches biomimétiques supportées sur une surface d’or, à partir de vésicules unilamellaires, à température ambiante et en quelques minutes. La couverture de surface en ferrocènes et l’hydrophobicité/hydrophilicité de la surface seront altérées par la suite pour investiguer l’effet sur la formation des bicouches lipidiques supportées. / Natural cell membranes are complex structures and may present many problems when studied in their native form. It is therefore desirable to have simpler lipid bilayer systems to study the components of cell membranes and their interaction with biological molecules. Immobilizing these lipid membranes on metallic solid surfaces, to form Supported Lipid Bilayers (SLB), is more advantageous due to the integrity with a wide range of surface-sensitive characterization techniques, such as atomic force microscopy (AFM), surface plasmon resonance spectroscopy (SPR), electrochemistry and vibrational spectroscopies (IR, Raman). The preparation of SLBs by vesicle fusion has always been the most suitable technique due to its simplicity and efficiency, but it requires critical experimental conditions such as the need for smooth and hydrophilic flat surfaces (mica, glass...), vesicles based on zwitterionic phospholipids in fluid phase, high lipid concentration, and lengthy SLB preparation times (>1h). In this thesis, we aim to develop a new simple, fast, and versatile method to form a wide range of supported biomimetic bilayers using zwitterionic and anionic phospholipid vesicles in gel and fluid phase on a gold substrate. This new approach consists in the use of ionic pairing reactions generated by a surface-confined redox system to induce the assembly of phospholipids and form the lipid bilayer. The first part of this thesis focuses on studying the electrochemical behavior of a self-assembled monolayer of ferrocenyldodecanethiolates (FcC12SAu) in the presence of amphiphilic molecules containing a carboxyl (fatty acid salt) and phosphate anionic group and a single hydrocarbon chain. This part will also focus on the use of ion-pairing reactions to induce the assembly of n-alkyl carboxylate and n-alkyl phosphate surfactants at the SAM/electrolyte interface. The second and main objective of this thesis work was subsequently devoted to the use of the surface-confined redox system to trigger by ion-pairing the assembly of phospholipids (amphiphilic molecules with double hydrocarbon chains) to form biomimetic bilayers supported on a gold surface from unilamellar vesicles at room temperature and within minutes. The surface coverage of ferrocenes and the hydrophobicity/hydrophilicity of the surface will be altered later to investigate the effect on the formation of supported lipid bilayers.

Page generated in 0.0516 seconds