• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise dos compartimentos de linfócitos T e B de memória em animais tratados e não tratados com cloroquina durante a infecção pelo Plasmodium chabaudi AS. / Analysis of T-and B-cell memory after untreated and drug treated blood-stage Plasmodium chabaudi AS malaria.

Rosário, Ana Paula Freitas do 25 March 2008 (has links)
A exposição limitada ao Plasmodium chabaudi induz proeminente imunidade celular, associada à proteção de células T da apoptose. Este estudo tem como objetivo verificar a influência da carga parasitária na geração e manutenção dos linfócitos T e B de memória ao P. chabaudi. Assim, camundongos C57BL/6 foram submetidos à infecção tratada (subpatente) ou não (patente) com cloroquina após a inoculação de 106 eritrócitos parasitados (EP) e analisados nos dias 0, 20, 60, 120 e 200. Com relação à memória de linfócitos T, no dia 20, as freqüências de células CD4+ memória/ativadas e respondedoras aos EP foram significativamente maiores nos animais do grupo subpatente. Os níveis máximos de IgG2a específica foram encontrados no dia 120 em ambos os grupos. O desafio dos animais com 108 EP mostrou que a imunidade protetora declina progressivamente, mas os grupos ainda são capazes de estabelecer resposta secundária eficiente que elimine o parasita. Assim, podemos concluir que a carga parasitária influencia a fase aguda, mas não impede a geração e manutenção das células T e B de memória. / One of the main characteristics of malaria is the intense policlonal activation of splenic T and B lymphocytes induced by the parasite and the consequent elimination, through apoptosis, of part of these cells. However, the limited exposure to the bloodstage malaria seems to induce a prominent cellular immunity, associated with the protection of T lymphocytes from apoptosis. With this in mind, this study aimed to verify the influence of the parasite load in the generation and maintenance of memory T and B cells specific for Plasmodium chabaudi chabaudi AS. In order to evaluate this idea, C57BL/6 mice were infected with 106 parasitized red blood cells (pRBC) and submitted to a patent (untreated) or subpatent infection (controlled with sub-curative doses of chloroquine every time parasitemia reached 1%). Splenocytes from these mice were analyzed at 20, 60, 120 and 200 days after infection, regarding the pRBC-specific T cell proliferation and the expression of surface molecules, as CD4, CD8, CD62L, CD45RB, CD44, CD45R-B220 and IgG. The parasitemia and the splenocyte phenotype were also monitored after the challenge with 108 pRBC. Regarding T cell memory, at day 20 of infection, the frequencies of effector/activated CD4+ T cells (CD62LLOW CD45RBLOW/HIGH) were significantly increased in animals from the patent group, which was strict linked with the highest cellular activation observed in these animals. On the other hand, the total numbers of pRBCproliferating T (CD4+ and CD8+) cells per spleen were approximately 3-fold increased in subpatent animals, indicating that these cells were protected from apoptosis as a result of the limited exposure to the parasite. However, in both groups, these parameters decreased to values similar to those in controls at day 200. The splenocytes from both groups produced Th1 cytokines in response to pRBC in all times of analysis, but at the early phase of infection, Th2 cytokines were also observed, but without differences between the infected groups. Regarding memory B cells, the frequency of sIgG+ cells was increased at day 20 of infection, when 11% and 9% of CD45R+ cells from patent and subpatent animals were positive, respectively. For both groups, specific IgG2a antibodies attained maximum serum levels at day 120, but at day 200, it is possible to observe a significant decrease of these levels only in the serum of patent mice. Moreover, at day 200 of infection, mice of subpatent group showed significantly higher amounts of IgG2a that recognized the intra-erythrocytic forms of the parasite and the surface of infected erythrocytes. Challenge of mice with 108 pRBC showed that protective immunity progressively decline with time and despite the higher levels of specific antibody in subpatent mice, both groups showed similar protection. In experiments of adoptive transference to CD28-/- mice, cells from 200-day infected mice were able to produce specific IgG2a antibodies, in a T CD4+ cell dependent way. In addition, we verified that CD45R+ cells of subpatent mice, when transferred to CD28-/- mice, secreted higher amounts of specific IgG2a and IgG1 antibodies, comparing to cells of patent mice. So, from this work, we can conclude that the parasite load has a great influence in the early immune response to P. chabaudi malaria and it also affects the generation and/or maintenance of memory B cells. Furthermore, according to our data, at least during the analyzed period, the loss of protective immunity against this parasite does not seem to be influenced by the acute-phase parasite load, but it can be a consequence of the progressive decline of T-cell memory response that occurs in patent and subpatent groups with time of infection.
2

B Cell Antigen Receptor-intrinsic Costimulation of IgG and IgE Isotypes / B Zell Antigen Rezeptor-intrinsische Kostimulation der IgG und IgE Isotypen

König, Lars 11 April 2012 (has links)
No description available.
3

Correlates of protective immunity against hepatitis C virus

Salah Eldin Abdel Hakeem, Mohamed 03 1900 (has links)
No description available.
4

Análise dos compartimentos de linfócitos T e B de memória em animais tratados e não tratados com cloroquina durante a infecção pelo Plasmodium chabaudi AS. / Analysis of T-and B-cell memory after untreated and drug treated blood-stage Plasmodium chabaudi AS malaria.

Ana Paula Freitas do Rosário 25 March 2008 (has links)
A exposição limitada ao Plasmodium chabaudi induz proeminente imunidade celular, associada à proteção de células T da apoptose. Este estudo tem como objetivo verificar a influência da carga parasitária na geração e manutenção dos linfócitos T e B de memória ao P. chabaudi. Assim, camundongos C57BL/6 foram submetidos à infecção tratada (subpatente) ou não (patente) com cloroquina após a inoculação de 106 eritrócitos parasitados (EP) e analisados nos dias 0, 20, 60, 120 e 200. Com relação à memória de linfócitos T, no dia 20, as freqüências de células CD4+ memória/ativadas e respondedoras aos EP foram significativamente maiores nos animais do grupo subpatente. Os níveis máximos de IgG2a específica foram encontrados no dia 120 em ambos os grupos. O desafio dos animais com 108 EP mostrou que a imunidade protetora declina progressivamente, mas os grupos ainda são capazes de estabelecer resposta secundária eficiente que elimine o parasita. Assim, podemos concluir que a carga parasitária influencia a fase aguda, mas não impede a geração e manutenção das células T e B de memória. / One of the main characteristics of malaria is the intense policlonal activation of splenic T and B lymphocytes induced by the parasite and the consequent elimination, through apoptosis, of part of these cells. However, the limited exposure to the bloodstage malaria seems to induce a prominent cellular immunity, associated with the protection of T lymphocytes from apoptosis. With this in mind, this study aimed to verify the influence of the parasite load in the generation and maintenance of memory T and B cells specific for Plasmodium chabaudi chabaudi AS. In order to evaluate this idea, C57BL/6 mice were infected with 106 parasitized red blood cells (pRBC) and submitted to a patent (untreated) or subpatent infection (controlled with sub-curative doses of chloroquine every time parasitemia reached 1%). Splenocytes from these mice were analyzed at 20, 60, 120 and 200 days after infection, regarding the pRBC-specific T cell proliferation and the expression of surface molecules, as CD4, CD8, CD62L, CD45RB, CD44, CD45R-B220 and IgG. The parasitemia and the splenocyte phenotype were also monitored after the challenge with 108 pRBC. Regarding T cell memory, at day 20 of infection, the frequencies of effector/activated CD4+ T cells (CD62LLOW CD45RBLOW/HIGH) were significantly increased in animals from the patent group, which was strict linked with the highest cellular activation observed in these animals. On the other hand, the total numbers of pRBCproliferating T (CD4+ and CD8+) cells per spleen were approximately 3-fold increased in subpatent animals, indicating that these cells were protected from apoptosis as a result of the limited exposure to the parasite. However, in both groups, these parameters decreased to values similar to those in controls at day 200. The splenocytes from both groups produced Th1 cytokines in response to pRBC in all times of analysis, but at the early phase of infection, Th2 cytokines were also observed, but without differences between the infected groups. Regarding memory B cells, the frequency of sIgG+ cells was increased at day 20 of infection, when 11% and 9% of CD45R+ cells from patent and subpatent animals were positive, respectively. For both groups, specific IgG2a antibodies attained maximum serum levels at day 120, but at day 200, it is possible to observe a significant decrease of these levels only in the serum of patent mice. Moreover, at day 200 of infection, mice of subpatent group showed significantly higher amounts of IgG2a that recognized the intra-erythrocytic forms of the parasite and the surface of infected erythrocytes. Challenge of mice with 108 pRBC showed that protective immunity progressively decline with time and despite the higher levels of specific antibody in subpatent mice, both groups showed similar protection. In experiments of adoptive transference to CD28-/- mice, cells from 200-day infected mice were able to produce specific IgG2a antibodies, in a T CD4+ cell dependent way. In addition, we verified that CD45R+ cells of subpatent mice, when transferred to CD28-/- mice, secreted higher amounts of specific IgG2a and IgG1 antibodies, comparing to cells of patent mice. So, from this work, we can conclude that the parasite load has a great influence in the early immune response to P. chabaudi malaria and it also affects the generation and/or maintenance of memory B cells. Furthermore, according to our data, at least during the analyzed period, the loss of protective immunity against this parasite does not seem to be influenced by the acute-phase parasite load, but it can be a consequence of the progressive decline of T-cell memory response that occurs in patent and subpatent groups with time of infection.
5

Signatures transcriptomiques et fonctionnelles de l’immunité protectrice au cours de multiples infections par le virus de l’hépatite C

Mazouz, Sabrina 12 1900 (has links)
Dans le monde, 58 millions de personnes sont chroniquement infectées par le virus de l'hépatite C (VHC). Depuis 2011, l'introduction des antiviraux à action directe a permis la guérison des infections chroniques chez la majorité des sujets traités (~95 %). Toutefois, les traitements sont coûteux et ne protègent pas contre les réinfections, d'où la nécessité de développer un vaccin prophylactique pour freiner efficacement l'épidémie du VHC. Environ 30% des primo-infections sont éliminées spontanément, représentant une occasion unique d'étudier les corrélats de l’immunité protectrice nécessaires pour le développement d’un vaccin efficace. Dans cette thèse, nous avons procédé à la définition des corrélats de l'immunité protectrice au cours des infections par le VHC primaires et subséquentes aux niveaux transcriptomique, clonotypique et fonctionnel à partir d’une cohorte d’utilisateurs de drogues par injection. Le premier objectif était de caractériser le répertoire de récepteurs des cellules T CD8 spécifique de l'épitope immunodominant et cross-réactif NS3 1073-1081 (CINGVCWTV) restreint par HLA-A2 au cours d’une primo-infection aiguë progressant vers une résolution spontanée ou une infection chronique. Nous avons identifié un ensemble de treize clonotypes publics, indépendamment de l'issue de l'infection. Plusieurs clonotypes publics avaient une longue durée de vie après résolution de l’infection et ont proliféré après réinfection par le VHC. En explorant les bases de données publiques, nous avons identifié plusieurs clonotypes partagés avec d'autres épitopes viraux restreints par HLA-A2, mais ils étaient de faible fréquence et de réactivité croisée limitée, suggérant un rôle limité des lymphocytes T CD8 cross-réactifs au cours de l'infection primaire par le VHC. Le deuxième objectif était de caractériser les signatures transcriptomiques longitudinales des cellules mononucléaires du sang périphérique totaux chez huit sujets ayant spontanément résolu deux infections consécutives par le VHC. Nous avons également comparé ces signatures avec un schéma vaccinal composé d'un vecteur à adénovirus de chimpanzé suivi d'un rappel utilisant la vaccine modifiée Ankara, exprimant tout deux les protéines non-structurales du VHC. Nous avons identifié une signature transcriptomique des plasmocytes au cours d'une réinfection aiguë, absente lors de l'infection primaire et après le rappel du vaccin. La résolution spontanée est associée à une expansion rapide des cellules B mémoires spécifiques de la glycoprotéine E2 chez 3 sujets et à une augmentation transitoire des anticorps neutralisants anti- E2 chez 6 sujets. Parallèlement, il y avait une augmentation de l'étendue et de l'ampleur des lymphocytes T spécifiques du VHC chez 7 sujets. En conclusion, nous avons identifié treize clonotypes publics uniques au VHC qui ont proliféré au cours des infections primaire et secondaire. La faible fréquence des clonotypes cross-réactifs suggère qu'ils ne sont pas des déterminants majeurs de l’issue de l’infection. De plus, nous avons observé une augmentation simultanée des réponses des lymphocytes B et T spécifiques du VHC au stade aiguë précoce, suggérant un rôle des deux bras de l’immunité adaptative dans la clairance de la réinfection du VHC. Nos résultats soutiennent l'idée de combiner deux stratégies vaccinales induisant à la fois une immunité à médiation cellulaire et une immunité humorale visant à prévenir les infections chroniques par le VHC. / Worldwide, 58 million individuals are chronically infected with hepatitis C virus (HCV). Since 2011, the introduction of direct acting antivirals enabled the cure of chronic HCV in the majority of treated subjects (~95%). However, direct-acting antivirals treatments are expensive and do not protect against reinfection, urging the need to develop a prophylactic vaccine to efficiently curb the HCV epidemic. Around 30% of acutely infected individuals will spontaneously clear the infection, representing a unique opportunity to study the correlates of immune protection needed to develop a potent vaccine. In this thesis, we proceeded to define the correlates of protective immunity during primary and sub-sequent HCV infections at the transcriptomic, clonotypic and functional levels using longitudinal peripheral blood mononuclear cells samples collected from a cohort of people who inject drugs (PWID). The first aim was to characterize the CD8 T cell receptor repertoire specific to the immunodominant and cross-reactive HLA-A2 restricted NS3 1073-1081 (CINGVCWTV) epitope during acute HCV in PWID progressing to either spontaneous resolution or chronic infection. We identified a set of thirteen public clonotypes in HCV-infected subjects irrespective of infection outcome. Several public clonotypes were long-lived in resolvers and expanded upon reinfection. By mining publicly available data, we identified several TCR clonotypes shared with other HLA-A2 restricted epitopes, but they were of low frequency and limited cross-reactivity, suggesting that they are not major determinants of infectious outcome. The second aim was to characterize longitudinal transcriptomic signatures using total peripheral blood mononuclear cells, as well as T and B cell recall responses in eight subjects who spontaneously resolved two successive episodes of HCV infection. Furthermore, we compared the transcriptomic signatures of primary and secondary resolving HCV infections, with an HCV nonstructural protein vaccine regimen of recombinant chimpanzee adenovirus 3 vector prime followed by modified vaccinia Ankara boost. We identified a plasma cell transcriptomic signature during early acute HCV reinfection that was absent in primary infection and following HCV vaccine boost. Spontaneous resolution of HCV reinfection was associated with rapid expansion of glycoprotein E2-specifc memory B cells in 3 subjects and transient increase in E2-specific neutralizing antibodies in 6 subjects. Concurrently, there was an increase in the breadth and magnitude of HCV-specific T cells in 7 subjects. In conclusion, we identified thirteen new public CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of crossreactive TCRs suggests that they are not major determinants of infectious outcome. Moreover, we observed a concurrent increase of HCV-specific B and T cell responses early during acute HCV reinfection at the transcriptomic and functional levels, suggesting a role for both arms of the adaptive immune response in HCV reinfection clearance. Our results support the combined T and B cell-based vaccine strategy aimed at preventing chronic HCV infections.

Page generated in 0.0904 seconds