• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 315
  • 148
  • 52
  • 36
  • 36
  • 19
  • 19
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1131
  • 744
  • 739
  • 422
  • 243
  • 221
  • 219
  • 209
  • 196
  • 189
  • 168
  • 156
  • 144
  • 129
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A Three Dimensional Scaffold for Anticancer Drug Development

Girard, Yvonne 01 January 2013 (has links)
Attrition rates for anticancer drugs are much higher than any other therapeutic area. Only 5%#37; of the agents that demonstrate anticancer activity in the preclinical stages of development demonstrate clinical efficacy in phase III trials. This high attrition rate becomes alarming when we consider that the cost of research and development can amount to 1 billion dollars. To exacerbate this problem, many new cancer drugs are being discontinued, withdrawn or suspended. The reasons for this high attrition rate are complex and may be partly attributed to suboptimal preclinical strategies such as the use of two-dimensional (2D) cell culture systems to evaluate new agents during the development and testing stages. Cancer cells cultured in 2D do not mimic the complexity of the three-dimensional (3D) milieu of tumors in vivo. There is overwhelming evidence that in vitro 3D culture systems more accurately reflect the tumor microenvironment and present better predictive value for assessing the efficacy of new chemotherapeutic agents. The development of 3D culture systems for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxy polyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT conversion and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.
92

Absence of Nucks1 enhances mesenchymal stem cells mediated cardiac protection

Chiu, Sin-ming, 趙善明 January 2013 (has links)
Despite major advances in diagnosis and prevention of coronary artery disease (CAD), the development of therapies to regenerate functional cardiomyocytes after myocardial infarction (MI) is very challenging. Studies have demonstrated that bone marrow derived mesenchymal stem cells (BM-MSCs) secrete a panel of growth factors and anti-inflammatory cytokines to activate resident cardiomyocytes and cardiac stem cells in myocardial repair after MI. However, the mechanisms of modulating BM-MSC secretions are not well understood. Recently, molecular candidates in regulating BM-MSCs paracrine secretion to improve cardiac protection have been explored. Amongst the molecular candidates, Nuclear casein kinase and cyclin-dependent kinase substrate 1 (Nucks1) is suggested as a regulatory protein in nuclear factor-kappa B (NF-κB) signaling pathway by interacting with TANK-binding kinase 1 (TBK1). TBK1 is a non-canonical I kappa B (IκB) kinase that can activate the NF-κB transcription factor and its transcriptional response. NF-κB signaling pathway controls many cellular responses such as cell survival, proliferation and cytokine productions. We hypothesizes Nucks1 may have potential roles in regulating mouse BM-MSCs secretion of growth factors and cytokine profiles in heart repairs after MI. To test our hypothesis, the cardiac protection efficacy of acute infarcted mouse myocardium was measured after the transplantation of WT versus Nucks1 KO BM-MSCs. To this end, we developed a mouse model of acute myocardial infarction (AMI) induced by ligation of left descendant coronary artery. Acute infarcted mouse myocardium receiving WT or Nuck1 KO BM-MSCs transplantation, demonstrated a significant improvement of left ventricular ejection fraction (LVEF), ESP, +dP/dt, ESPVR and vessel density, and reduced infarction size in comparison with PBS control group post-4 weeks of transplantation. Furthermore, acute infarcted mouse myocardium receiving Nucks1 KO BM-MSCs transplantation provided better cardioprotective effects than those receiving WT BM-MSCs transplantation. Immunostaining disclosed CD31 and smooth muscle actin (SMA) expression in acute infarcted mouse myocardium receiving Nucks1 KO BM-MSCs were relatively higher than those receiving WT BM-MSCs transplantation. Additionally, a distinct secretion profile of growth factors and cytokines between Nucks1 KO BM-MSCs versus WT BM-MSCs under in vitro ischemia was studied. Expression of vascular endothelial growth factor alpha (VEGFα) in Nucks1 KO BM-MSCs under hypoxia/ serum deprivation was significantly higher than that of WT BMMSCs. Taken together, our data suggested BM-MSCs provide cardiac protection in acute infarcted myocardium. Transplantation of Nucks1 KO BMMSCs may further enhance the cardiac repair of the acute infracted myocardium through an induction of VEGFα. / published_or_final_version / Medicine / Master / Master of Philosophy
93

Astragaloside IV promotes haematopoiesis and enhances cytokines release by mesenchymal stromal cells mediated immune regulation

Deng, Ruixia, 邓瑞霞 January 2012 (has links)
Although tremendous efforts have been made to search for other novel growth factors in promoting marrow recovery after irradiation or chemotherapy, there have not been any efficient and safe agents discovered so far. Danggui Buxue Tang (當歸補血湯) as a traditional Chinese herbal decoction, is commonly used for replenishing blood loss in menstruating women, or enhancing erythropoiesis and immune responses in various settings. Our previous study confirmed that Danggui Buxue Tang promotes haematopoiesis and thrombopoiesis both in vitro & in vivo. Recent studies also showed that parenteral Astragalus regulates haematopoiesis in myelosuppressed mice and has protection effect on UV irradiated human dermal fibroblasts. However, astragaloside IV, as the major component of Astragalus, the "Monarch" (君葯) in Danggui Buxue Tang, the bioactivity and its possible mechanism on haematopoiesis remains unclear. My studies showed that astragaloside IV had promoting effect on different lineages of haematopoietic CFUs forming including erythrocytes, granulocytes, monocytes and megakaryocytes both in normal and irradiated mice. In the K562 and CHRF apoptotic model, astragaloside IV exerted proliferation effect and induced K562 into megakaryocytic differentiation. Astragaloside IV up-regulated phosphorylation of ERK and it was abolished by PD98059. Meanwhile, astragaloside IV increased phosphorylated ERK migration into nuclei which enhanced cell survival and differentiation. EGFR inhibitor also attenuated the enhancing effect of astragaloside IV on ERK phosphorylation. It suggested that astragaloside IV is likely to function through EGFR with subsequent activation of ERK1/2 pathway. Furthermore, astragaloside IV also increased Bcl-2/Bax ratio by up-regulating Bcl-2 alone. Bone marrow derived mesenchymal stromal cells are the major supporting cells involved in the haematopoietic microenvironment. My studies demonstrated that astragaloside IV also indirectly enhanced haematopoiesis by stimulating cytokine release from MSCs, especially IL-6, IL-8, MCP-1 and GRO1. I also found that matured and activated population of neutrophils was increased after cultured with mesenchymal stromal cells conditional medium stimulated by astragaloside IV. This finding further supported why there was a significant increment of CFU-GM in vitro culture with murine bone marrow collected from mouse model after astragaloside IV treatment, where MSCs serve as the feeder layer in such system in mice. In conclusion, my studies explored the directly and indirectly dynamic and multiple targeted function of astragaloside IV on haematopoiesis. In addition to activating haematopoietic cells, astragaloside IV also stimulated mesenchymal stromal cells to secret cytokines that could modulate haematopoiesis and up-regulated neutrophil production and maturation. It provided a holistic view on how astragaloside IV induced synergistic effect on haematopoietic cells and mesenchymal stromal cells in the marrow microenvironment. / published_or_final_version / Chinese Medicine / Doctoral / Doctor of Philosophy
94

Chemoresistance induced by mesenchymal stromal cells on cancer cells

Fung, Kwong-lam, 馮廣林 January 2013 (has links)
Human mesenchymal stromal cells (hMSCs) are part of bone marrow micro-environment that supports hematopoiesis. However, hMSCs also enhance tumor progression and survival when they become part of the cancer micro-environment. I aimed to investigate the interaction between hMSCs and cancer cells during chemotherapy. Firstly, I studied the interaction between hMSCs and T-lineage acute lymphoblastic leukemia (T-ALL) cells under pegylated arginase I (BCT-100) treatment. Three T-ALL cell lines were sensitive to BCT-100 but not hMSCs. Conversely, hMSCs could partly protect all T-ALL cell lines from BCT-100 induced cell death under transwell co-culture condition. Concerning the possible mechanism, the intermediate metabolite L-ornithine could not rescue most T-ALL cells from BCT-100 treatment. But the downstream L-arginine precursor, L-citrulline could partly rescue all T-ALL cells from BCT-100 treatment. Ornithine transcarbamylase (OTC) converts L-ornithine into L-citrulline. OTC expression level in hMSCs remained relatively high during BCT-100 treatment but OTC expressions in T-ALL cell lines declined drastically. It suggested that hMSCs may protect T-ALL cells against BCT-100 treatment by having sustained OTC expression. Suppression of hMSCs by vincristine (VCR) disrupted the protective effect of hMSCs to most T-ALL cells during BCT-100 treatment. This suggests that by transiently suppressing hMSCs, we may abolish the protective effect of hMSCs to T-ALL cells during BCT-100 treatment. Then I studied the interaction between hMSCs and neuroblastoma under cisplatin treatment. Two neuroblastoma cell lines were used for both of them are cisplatin sensitive while hMSCs are cisplatin resistant. hMSCs could partly protect neuroblastoma cells from cisplatin induced cytotoxicity. On the other hand, exogenous IL-6 but not IL-8 could also partly rescue them from cisplatin induced cytotoxicity. IL-6 activated STAT3 phosphorylation dose-dependently and enhanced expression of detoxifying enzyme (glutathione S-transferase π, GST-π) in neuroblastoma. Such effect could be counteracted by anti-IL-6R neutralizing antibody tocilizumab (TCZ). However, TCZ failed to suppress hMSCs’ protection to neuroblastoma during cisplatin treatment. This suggests involvement of multiple factors. Up-regulation of serum GST-πin some hTertMSCs/neuroblastoma co-engrafted SCID mice compared to neuroblastoma engrafted mice provided a clue that GST-π might be a possible stromal-protection factor. Caffeic acid phenethyl ester (CAPE) is a known GST inhibitor after tyrosinase activation. Neuroblastoma cells expressed tyrosinase and CAPE enhanced cisplatin cytotoxicity on them, with or without hMSCs. Paradoxically, CAPE enhanced GST-πexpression with or without cisplatin treatment in neuroblastoma suggesting possible negative feedback to GST-π inhibition. However, such additive effect of CAPE to cisplatin cytotoxicity was not observed in vivo. Further delineation of the in vivo study design may help to verify the additive effect of CAPE to cisplatin cytotoxicity in vivo. Finally, I studied the effect of apoptotic cancer cells (AC) on the immune function of hMSCs. hMSCs could phagocytose apoptotic neuroblastoma cells with respective up-regulation of many immune-mediators including two highly-expressed cytokines IL-6 and IL-8. Up-regulation of these immune-mediators may enhance immune cells chemotaxis. Further detailed investigation on the effect of AC-engulfed hMSCs to other immune cells will help us to understand the dynamic interaction between cancer cells and stromal cells during chemotherapy. / published_or_final_version / Paediatrics and Adolescent Medicine / Doctoral / Doctor of Philosophy
95

Role of mesenchymal stem cells in proteinuric nephropathy

Wu, Haojia, 吳浩佳 January 2014 (has links)
Proteinuria has been recognized as a common feature in many forms of chronic kidney disease (CKD). As traditional medications for proteinuric nephropathy, such as blockade of the renin-angiotensin system (RAS), has only achieved limited clinical success, more effective renoprotective strategies need to be explored. Bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) have recently shown promise as a therapeutic tool in acute kidney injury (AKI) models. The therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) in proteinuric nephropathy models is unknown. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, I first examined the potential effect of BM-MSCs in albumin-induced pro-inflammatory response and epithelial-to-mesenchymal transition (EMT) in PTECs. The unstimulated BM-MSCs exerted moderate suppressive effect on tubular inflammation as only albumin-induced CCL-2 and CCL-5 expression was attenuated in PTECs. When concomitantly stimulated by albumin excess, however, BM-MSCs remarkably suppressed albumin-induced tubular IL-6, IL-8, TNF-α, CCL-2, and CCL-5 expression, suggesting albumin overloaded milieu to be a prerequisite for them to fully exhibit their anti-inflammatory effects. This effect was mediated via deactivation of tubular NF-κB signaling as BM-MSCs prevented the overexpression of p-IκB and nuclear translocation of NF-κB. In addition, albumin-induced tubular EMT, as shown by the loss of E-cadherin and induction of α-SMA, FN-1 and collagen IV in PTECs, was also prevented by BM-MSC co-culture. To dissect the mechanism of action, I next explored the paracrine factors secreted by BM-MSCs under an albumin-overloaded condition and studied their contribution to the protective effect on tubular inflammation and EMT. Albumin-overloaded BM-MSCs per se overexpressed 34 paracrine factors, of which hepatocyte growth factor (HGF) and TNFα-stimulating gene (TSG)-6 were regulated by P38 and NF-κB signaling. These paracrine factors suppressed both the proinflammatory and profibrotic phenotypes in albumin-induced PTECs. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. Finally, in albumin-overloaded mice, a well established murine model reminiscent of human CKD, treatment with mouse BM-MSCs markedly reduced BUN, tubular CCL-2 and CCL-5 expression, interstitial macrophage, α-SMA and collagen IV accumulation independent of changes in proteinuria, together with upregulated renal cortical expression of HGF. Exogenous BM-MSCs were detected in their kidneys by PKH-26 staining. Collectively, these in vitro and in vivo data suggest a modulatory effect of BM-MSCs on albumin-induced tubular inflammation and fibrosis and underscore a therapeutic potential of BM-MSCs for CKD in the future. / published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
96

Importance of Hyaluronan-CD44 Signaling in Tumor Progression : Crosstalk with TGFβ and PDGF-BB Signaling

Porsch, Helena January 2013 (has links)
In order for solid tumors to metastasize, tumor cells must acquire the ability to invade the surrounding tissue and intravasate into blood- or lymph vessels, survive in the circulation and then extravasate at a distant site to form a new tumor. Overexpression of the glycosaminoglycan hyaluronan, and its adhesion receptor CD44, correlate with breast cancer progression. This thesis focuses on the role of hyaluronan in tumor invasion and metastasis. In paper I, we demonstrated that upregulation of the hyaluronan synthesizing enzyme hyaluronan synthase 2 (HAS2) was crucial for transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells. In paper II, we further demonstrated that silencing of HAS2 decreased the invasive behavior of bone-metastasizing breast cancer cells, via upregulation of tissue inhibitor for metalloproteinase 1 (TIMP1), and dephosphorylation of focal adhesion kinase (FAK). During tumorigenesis, stromal cells, such as fibroblasts, play important roles and several growth factors are synthesized, promoting crosstalk between different cell surface receptors. In paper III, we investigated the crosstalk between the hyaluronan receptor CD44 and the receptors for TGFβ and platelet-derived growth factor BB (PDGF-BB) in dermal fibroblasts. We found that the receptors for the three molecules form a ternary complex, and that PDGF-BB can activate the Smad pathway downstream of TGFβRI. Importantly, CD44 negatively modulated the signaling of both PDGF-BB and TGFβ. In paper IV, we studied the process by which breast cancer cells invade blood-vessels and the role of hyaluronan and CD44 in angiogenesis. Importantly, CD44, or the hyaluronan degrading enzyme hyaluronidase 2 (HYAL2), decreased the capacity of endothelial cells to form tubes in a 3D in vivo-like assay.  Collectively, our studies add to the understanding of the role of hyaluronan in tumor progression.
97

Distinct Functions of MEKK3 and MEKK4 in Heart Valve Morphogenesis

Stevens, Mark V. January 2008 (has links)
Congenital heart defects (CHDs) occur in 5% of births. While gene mutations have been identified in CHD patients, not much is known about coordinated signaling mechanisms during heart morphogenesis. Endocardial cushions of the atrioventricular canal and outflow tract contribute to the formation of valves and septa in the heart. Epithelial cell to mesenchymal cell transition (EMT) is a key process in cardiac cushions before this tissue undergoes remodeling into valves and septa. Defining complex signaling networks directing cardiac cushion epithelial to mesenchymal transition is essential for understanding the etiology of CHDs. We identified the MAP3Kinases, MEKK3 and MEKK4, as signaling components present during cardiovascular development. MEKK3 is detected in myocardium and endocardium surrounding the cardiac cushions of the atrioventricular canal during heart morphogenesis, while MEKK4 is found in the myocardium, endocardium, and cushion mesenchyme. Functional assays were employed to examine how MEKK3 and MEKK4 kinase activity contributes to endocardial EMT. Addition of dominant negative (dn)-MEKK3 or dn-MEKK4 to endocardial cushion explants, cultures that recapitulate in vivo EMT, causes a significant decrease in mesenchyme formation as compared to controls. Ventricular explant cultures, where the endocardial cells do not normally undergo EMT, provided with constitutively active (ca) MEKK3 activates mesenchyme production. ca-MEKK4 is not sufficient to cause EMT in ventricular endocardium. Furthermore, ca-MEKK3 expression in ventricular explants leads to increased secreted TGFβ2, which mediates mesenchyme formation. Blockade of TGFβ2 in ventricular explant cultures provided with ca-MEKK3 ablates the activation of EMT. In addition to in vitro studies, we show that mice expressing kinase inactive MEKK4 have myxomatous valves characterized by increased proliferation and changes in extracellular matrix molecules such as hyaluronan. We next investigated whether signal transduction is affected in cushions and valves of the MEKK4 kinase inactive mice. Abnormal TGFβ signaling is observed in MEKK4 mutant hearts, which is also seen with Marfan's sydrome. Remarkably, activated MEKK3 is maintained in cardiac cushions of these mice after EMT indicating compensation by MEKK3 for loss of MEKK4 catalytic activity. Our observations define MEKK3 and MEKK4 expression during cardiovascular development and suggest that MEKK3 and MEKK4 have diverse functions during development of heart valves.
98

The Characterization of Endothelial-Mesenchymal-Transition in Response to TGF-beta and its Potential Role in Angiogenesis

Zours, Sonja Charlotte 13 September 2012 (has links)
Angiogenesis is the formation of new blood vessels by sprouting from pre-existing ones. Transforming growth factor-beta (TGFβ) promotes angiogenesis and is a known inducer of endothelial-mesenchymal transition (EndMT), a process whereby endothelial cells become fibroblastic and motile. We hypothesize that TGFβ-induced EndMT enables endothelial cells to detach from the mature vessel and migrate to form the sprout that becomes a new vessel during angiogenesis. This study characterized EndMT in response to TGFβ +/- vascular endothelial growth factor (VEGF). Bovine aortic endothelial cells (BAEC) were stimulated with TGFβ +/- VEGF for prolonged periods. Confocal imaging and immunoblotting analyses revealed the strongest EndMT response at 5 ng/ml of TGFβ after 144 hours of exposure. A three-dimensional collagen model of angiogenesis revealed a potential relationship between EndMT and blood vessel sprouting. These results suggest that EndMT induction in BAECs requires high concentrations and prolonged exposure to TGFβ and is not significantly influenced by VEGF. / NSERC
99

Roles of Matrix Mechanics in Regulating Aortic Valve Interstitial Cell Pathological Differentiation

Chen, Jan-Hung 05 January 2012 (has links)
Calcific aortic valve disease (CAVD) is associated with increased presence of myofibroblasts, osteoblastic cells and, occasionally, adipocytes and chondrocytes in lesions. The ectopic cell types in diseased valves may be elaborated by an unidentified multipotent progenitor subpopulation within the valve interstitial cells (VICs) that populate the valve interstitium. Notably, lesions form preferentially in the fibrosa layer, the stiffer layer of the valve leaflet. It has been shown that differentiation of VICs to myofibroblasts and osteoblasts is modulated by matrix stiffness. However, the molecular mechanisms involved in mediating stiffness-dependent mechanotransduction remain obscure. The objectives of this thesis were: (1) to determine whether VICs contain a subpopulation of multipotent mesenchymal progenitor cells and to measure the frequencies of the mesenchymal progenitors and osteoprogenitors; (2) to determine the role of β-catenin and matrix stiffness in transforming growth factor-β1 (TGF-β1)-induced myofibroblast differentiation of VICs; and (3) to preliminarily investigate the involvement of four and a half LIM domains protein 2 (FHL2) in CAVD and stiffness-dependent mechanotransduction downstream of RhoA in VICs. Firstly, VICs were found to contain a subpopulation of mesenchymal progenitors that are inducible to osteogenic, myofibroblastic, adipogenic, and chondrogenic lineages. The frequencies of mesenchymal progenitors and osteoprogenitors were significantly higher than other reported sources. Secondly, it was demonstrated that β-catenin is required in TGF-β1-induced, matrix stiffness-regulated myofibroblast differentiation. Notably, TGF-β1 was only able to induce β-catenin nuclear translocation and myofibroblast differentiation on matrices with fibrosa-like stiffness, but not on matrices with ventricularis-like stiffness. Thirdly, FHL2 was found to be upregulated and colocalized with runt-related transcriptional factor 2 (Runx2) in lesions in the fibrosa layer of diseased valves, suggesting its role in osteogenic processes in CAVD. Notably, increasing matrix stiffness increased FHL2 nuclear translocation and RhoA activity in VICs. Preliminary data showed that matrix stiffness regulates FHL2 nuclear translocation via RhoA activity. These results suggest that differentiation of the rich valve progenitor subpopulation, regulated by both mechanical and biochemical cues, may contribute to the preferential occurrence of ectopic cell types in the fibrosa in CAVD. More broadly, these results highlight the critical role of mechanical environment in modulating cellular biochemical signaling.
100

The role of cultured chondrocytes and mesenchymal stem cells in the repair of acute articular cartilage injuries

Secretan, Charles Coleman Unknown Date
No description available.

Page generated in 1.2959 seconds