• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic conversion of syngas to ethanol and higher alcohols over Rh and Cu based catalysts

Lopez Nina, Luis Gagarin January 2017 (has links)
The thermochemical process converts almost any kind of biomass to a desired final product, i.e. gaseous or liquid transportation fuels and chemicals. The transportation fuels obtained in this way are renewable biofuels, which are alternatives to fossil fuels. During the last few years, thermochemical plants for the production of bioethanol have been launched and another is under construction. A total of about 290 million liters of ethanol are expected to be processed per year, mostly using municipal solid waste. Considerable efforts have been made in order to find a more selective catalyst for the conversion of biomass-derived syngas to ethanol. The thesis is the summary of five publications. The first two publications (Papers I and II) review the state of the art of ethanol and higher alcohols production from biomass, as well as the current status of synthetic fuels production by other processes such as the Fischer-Tropsch synthesis. Paper III analyses the catalytic performance of a mesoporous Rh/MCM-41 (MCM-41 is a hexagonal mesoporous silica) in the synthesis of ethanol which is compared to a typical Rh/SiO2 catalyst. Exhaustive catalytic testing including the addition of water vapor and modifying the hydrogen partial pressure in the syngas feed-stream which, in addition to the catalyst characterization (XRD, BET, XPS, chemisorption, TEM and TPR) before and after the catalytic testing, have allowed concluding that some water vapor can be concentrated in the pores of the Rh/MCM-41 catalyst. The concentration of water-vapor promotes the occurrence of the water gas shift reaction, which in turn induces some secondary reactions that change the product distribution, as compared to results obtained from the typical Rh/SiO2 catalyst. These results have been verified in a wide range of syngas conversion levels (1-68 %) and for different catalyst activation procedures (catalyst reduction at 200 °C, 500 °C and no-reduction) as shown in Paper IV. Finally, similar insights about the use of mesoporous catalyst have been found over a Cu/MCM-41 catalyst, shown in Paper V. Also in Paper V, the effect of metal promoters (Fe and K) has been studied; a noticeable increase of ethanol reaction rate was found over Cu-Fe-K/MCM-41 catalyst as compared to Cu/MCM-41. / <p>QC 20161125</p>
2

Dimethyl Ether Synthesis Over Novel Mesoporous Catalysts

Tokay, Kenan Cem 01 August 2008 (has links) (PDF)
Due to overconsumption, fossil reserves are rapidly being depleted and various sources predict that they will not last until the end of 21st century. Moreover, the increase in the rate of global warming and the polluting matter emitted by the vehicles consuming fossil fuels has increased the search for renewable and clean energy sources. Alcohols and ethers, which contain fewer pollutants and have better burning properties, are commonly thought among clean fuel alternatives. Among the potential clean energy sources, dimethyl-ether is already in use in the automotive industries of many countries such as China and Japan, due to its low NOx and CO2 emissions, high cetane rating and efficient combustion characteristics, especially in diesel engines. In this work, dimethyl-ether synthesis is achieved using methanol dehydration reaction over solid acid catalysts. For this purpose, three different mesoporous MCM-41 type aluminum silicates have been synthesized with direct hydrothermal synthesis method and aluminum is added to the synthesized SBA-15 catalyst using impregnation method. Apart from the catalysts synthesized, different commercial catalysts such as aluminum oxide in different forms (&amp / #945 / and &amp / #947 / ), Nafion NR-50 and Nafion SAC-13 have also been tested in this reaction. These materials were characterized by methods such as XRD, EDS, SEM, and N2 physical adsorption and DRIFTS were also investigated in terms of paramters such as the conversion of methanol to products, selectivity and yield. The analyses have shown that AlSi1 is the most active of all the aluminum silicates synthesized in both 0.136 and 0.27 s.g/cm3 space times, with up to 80% methanol conversion in all temperatures tested. AlSi1 also has low by-product formation and similar to other aluminum silicates, its dimethyl-ether selectivity approaches 1 at 4000C. Among all synthesized catalysts, the dimethyl-ether yield was seen to be the highest for Al-SBA-15, which approaches 0.5 at 4000C for both space times. For all aluminum silicates synthesized, about 40% dimethyl-ether yield was obtained at the same temperature and space times. Among the aluminum oxides, &amp / #945 / -alumina was seen to be superior to others in &amp / #947 / forms in terms of conversion selectivity and yield, especially at low temperatures. As to Nafion catalysts, due to its much higher surface area and high Bronsted acidity, Nafion SAC-13 has shown higher activity compared to Nafion NR-50 for all temperatures and space times tested.
3

Zr And Silicotungstic Acid Incorporated Silicate Structured Mesoporous Catalysts For Dimethyl Ether Synthesis

Orman, Sultan 01 August 2011 (has links) (PDF)
Due to high consumption rates of petroleum derived fuels and environmental regulations, significant search has been initiated for the development of environmental friendly and efficient fuels, which were derived from more abundant feedstocks. Dimethyl ether (DME), as having a good combustion quality and high cetane number, is an efficient alternative for diesel fuel. With improved combustion quality, the emissions from DME used engines are greatly decreased. DME synthesis can be carried out via two different methods / methanol dehydration on acidic catalysis and syn-gas conversion on bifunctional catalysis. In this study, the aim is to synthesize acidic catalysts using direct hydrothermal synthesis method for DME synthesis as using methanol as feed stock via dehydration and to characterize these materials. The support of the synthesized materials comprises of MCM-41 structure and silicotungstic acid (STA) and metals (Zr / Ni / Cu) were incorporated into the MCM-41 structure during synthesis. Two different techniques were used to extract the surfactant (CTMABr) from catalyst matrix. First one is the conventional calcination technique (at 350&deg / C) and the second is supercritical fluid extraction (at various operating conditions) with methanol modified CO2. The effect of metal loading on extraction performance is analyzed through characterizations of Ni and Cu incorporated materials. In addition, The effect of operation parameters on catalyst properties are also investigated with performing extraction at different pressures for different durations. By changing the type of metal incorporated into the catalyst, the extraction performance is also monitored. The characterization results indicated that, SFE process is also a promising method for surfactant removal. The activities of zirconium added catalysts are tested in methanol dehydration reaction towards DME. It is concluded that the conversion of methanol and selectivity of DME in presence of extracted samples are lower (maximum yield -0.54- obtained at 450&deg / C with sceSZ1) compared to the calcined materials (maximum yield -0.80- obtained at 300&deg / C with cSZ6). This result can also be foreseen by DRIFTS analysis of pyridine adsorbed samples. The acid sites of extracted materials are not as strong as in the calcined catalysts.
4

Catalyseurs à base d’oxyde de manganèse pour l’oxydation en voie humide catalytique de la méthylamine / Manganese-based oxides catalysts for the catalytic wet air oxidation of methylamine-containing aqueous effluent

Schmit, France 28 October 2014 (has links)
Des catalyseurs hétérogènes à base d'oxydes de manganèse associés aux dioxydes de titane, zirconium et cérium (Mn-Ti-O, Mn-Zr-O et Mn-Ce-O) ont été préparés par différentes voies de synthèse et évalués dans l'Oxydation en Voie Humide Catalytique (OVHC) de la méthylamine. Diverses voies de synthèse ont été explorées pour la préparation de ces catalyseurs, notamment une voie sol-gel mettant en oeuvre des copolymères à bloc, une voie de nanomoulage dans des moules de silice mésoporeuse et une voie solvothermale. L'insertion du manganèse a été réalisée de deux manières : soit ab initio dès le début de la synthèse, soit a posteriori par imprégnation d'un support préalablement formé avec un précurseur de manganèse. Des oxydes mixtes mésoporeux ou des oxydes de manganèse supportés sur des oxydes mésoporeux de Ti, Zr et Ce ont été réalisés. Si la texture de ces matériaux est relativement préservée, d'importantes ségrégations du manganèse ont parfois été observées après réaction. Ces catalyseurs ont été évalués dans l'OVHC de la méthylamine, une molécule organique azotée prise pour modèle. Ils sont tous actifs dans la dégradation de la méthylamine. Toutefois, ceux associant le manganèse au cérium sont les plus performants, devant les matériaux manganèse-zirconium et manganèse-titane. Deux voies de dégradation de la méthylamine ont été mises en évidence. Quel que soit le catalyseur, la première voie mène à la formation d'ions NH4 +, HCOO-, NO2 - et NO3 - présents en phase aqueuse. Les ions ammonium et formiates, formés en quantités équimolaires en tout début de réaction, sont des produits primaires de cette réaction. Les ions ammonium sont réfractaires à l'oxydation et s'accumulent dans le milieu réactionnel alors que les ions formiates sont complètement minéralisés en CO2 et H2O en fin de réaction. Nitrites et nitrates sont détectés à l'état de traces. La deuxième voie conduit directement et très majoritairement à N2 et CO2, sans qu'aucun autre composé ne soit détecté intermédiairement en phase liquide. Cette dernière voie peut représenter jusqu'à 50% de la dégradation de la méthylamine. En fin de réaction, la totalité de la fraction carbonée de la méthylamine a été minéralisée en CO2 et la sélectivité en diazote atteint jusqu'à 50% / Heterogeneous manganese based oxide associated to titanium, zirconium or cerium dioxide catalysts (Mn-Ti-O, Mn-Zr-O and Mn-Ce-O) were prepared using different synthesis route and evaluated in the Catalytic Wet Air Oxidation (CWAO) of methylamine. Various synthesis routes were investigated to prepare the catalysts, especially the sol-gel method using block copolymers, the nano-casting approach in mesoporous silicate templates and the solvothermal synthesis. Introduction of manganese was achieved in two different ways: either ab initio, from the beginning of the synthesis or a posteriori via impregnation of the support with a manganese precursor. If the textural properties of these materials are almost unchanged after reaction, an important segregation of the manganese was sometime observed. These catalysts were evaluated in the CWAO of methylamine, a model nitrogen-containing organic molecule. All catalysts were active in the degradation of methylamine. However, those combining manganese and cerium were performing much better than the manganese-zirconium and manganese-titanium ones. Two degradation pathways were evidenced. Whatever the catalyst, the first degradation route led to the formation of NH4 +, HCOO-, NO2 - and NO3 - ions in the aqueous phase. Ammonium and formate ions were produced in equimolar amount at the beginning of the reaction and appeared as primary products. Ammonium ions were refractory toward further oxidation and accumulated in the reaction mixture, while formate ions were totally mineralized to CO2 and H2O by the end of the reaction. Nitrite and nitrate ions were detected in trace amount. The second pathway would directly and mainly lead to N2 and CO2, without any intermediate compound being detected in the liquid phase. This last pathway would account for 50% of the degradation of methylamine. At the end of the reaction, the carbon fraction in methylamine was totally mineralized to CO2 and the selectivity in molecular nitrogen reached up to 50%
5

Desenvolvimento de materiais híbridos micro-mesoporosos contendo terras raras para utilização no craqueamento de frações de petróleo

Carvalho, Sanny Wedja Melo Machado de 25 February 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In recent years there has been a number of innovative procedures to obtain new catalysts cracking of heavy petroleum fractions with parameters and studies of new synthesis methods, allowing further adjustment in the formation of these materials. In this context, were synthesized ZSM-12 (Si/Al = 50), AlMCM-41 (Si/Al = 100) AlMCM-48 (Si/Al = 100), by methods of synthesis have been explored in the literature and proposed methods synthesis for the formation of micro-mesoporous materials of the type ZSM-12/MCM-41 and ZSM-12/MCM-48. The materials ZSM-12, AlMCM-41 and AlMCM-48 were subjected to ion exchange process to obtain the acid form, HZSM-12, HAlMCM-41 and HAlMCM-48. Then all of the synthesized materials were impregnated with lanthanum oxide. The catalysts were characterized by physicochemical techniques. The X-ray diffraction patterns of the synthesized samples showed characteristic peaks of ZSM-12, MCM-41 and MCM-48 before and after impregnation with the lanthanum oxide. The absorption spectra in the infrared showed bands relating to links of each structure. The materials presented adsorption and desorption isotherms of N2 type I, to HZSM-12 and type IV for HAlMCM-41, HAlMCM-48, HZSM-12/MCM-41 and HZSM-12/MCM- 48 materials. The hybrid type HZSM-12/MCM-41 and HZSM-12/MCM-48 exhibited high values of surface areas (in the range of 689-1304 m2 g-1) which confirmed the formation of mesopores as well as pore diameters in the range of 3.6 nm. The microstructural analysis of the samples revealed the presence of the microporous, mesoporous, micro-mesoporous phases and lanthanum oxide before and after the impregnation process and thermogravimetric curves determined to dehydration temperatures of the materials and their thermal stability. / Nos últimos anos tem existido um grande número de inovações nos procedimentos para obtenção de novos catalisadores de craqueamento de frações pesadas de petróleo, com estudos de novos parâmetros e métodos de síntese, permitindo maiores ajustes na formação desses materiais. Neste contexto, foram sintetizados os materiais ZSM-12 (Si/Al = 50), AlMCM-41 (Si/Al = 100), AlMCM-48 (Si/Al = 100), por metodologias de sínteses já exploradas na literatura e foram propostos métodos de síntese para a formação de materiais micro-mesoporosos do tipo ZSM-12/MCM-41 e ZSM-12/MCM-48. Os materiais ZSM-12, AlMCM-41 e AlMCM-48 foram submetidos a processo de troca iônica para obtenção na forma ácida, HZSM-12, HAlMCM-41 e HAlMCM-48. Em seguida todos os materiais sintetizados foram impregnados com óxido de lantânio. Os catalisadores obtidos foram caracterizados por técnicas físico-químicas. Os difratogramas de raios-X das amostras sintetizadas apresentaram os picos característicos da ZSM-12, do MCM-41 e do MCM-48 antes e após a impregnação com o óxido de lantânio. Os espectros de absorção na região do infravermelho evidenciaram as bandas referentes às ligações de cada estrutura. Os materiais apresentaram isotermas de adsorção e dessorção de N2 do tipo I, para a HZSM-12, e do tipo IV, para os materiais HAlMCM-41, HAlMCM-48, HZSM-12/MCM-41 e HZSM-12/MCM-48. Os híbridos do tipo HZSM-12/MCM-41 e HZSM-12/MCM-48 exibiram altos valores de áreas superficiais (na faixa de 689 - 1304 m2 g-1), que confirmaram a formação de mesoporos, bem como diâmetros de poros na ordem de 3,6 nm. As análises microestruturais das amostras revelaram as presenças das fases microporosa, mesoporosa, micro-mesoporosas e do óxido de lantânio, antes e após o processo de impregnação e as curvas termogravimétricas determinaram às temperaturas de desidratação dos materiais bem como a estabilidade térmica destes.

Page generated in 0.0601 seconds