• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 25
  • 24
  • 24
  • 22
  • 21
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 16
  • 13
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modelling the middle atmosphere and its sensitivity to climate change

Jonsson, Andreas January 2005 (has links)
The Earth's middle atmosphere at about 10-100 km has shown a substantial sensitivity to human activities. First, the ozone layer has been reduced since the the early 1980s due to man-made emissions of halogenated hydrocarbons. Second, the middle atmosphere has been identified as a region showing clear evidence of climate change due to increased emissions of greenhouse gases. While increased CO2 abundances are expected to lead to a warmer climate near the Earth's surface, observations show that the middle atmosphere has been cooling by up to 2-3 degrees per decade over the past few decades. This is partly due to CO2 increases and partly due to ozone depletion. Predicting the future development of the middle atmosphere is problematic because of strong feedbacks between temperature and ozone. Ozone absorbs solar ultraviolet radiation and thus warms middle atmosphere, and also, ozone chemistry is temperature dependent, so that temperature changes are modulated by ozone changes. This thesis examines the middle atmospheric response to a doubling of the atmospheric CO2 content using a coupled chemistry-climate model. The effects can be separated in the intrinsic CO2-induced radiative response, the radiative feedback through ozone changes and the response due to changes in the climate of the underlying atmosphere and surface. The results show, as expected, a substantial cooling throughout the middle atmosphere, mainly due to the radiative impact of the CO2 increase. Model simulations with and without coupled chemistry show that the ozone feedback reduces the temperature response by up to 40%. Further analyses show that the ozone changes are caused primarily by the temperature dependency of the reaction O+O2+M->O3+M. The impact of changes in the surface climate on the middle atmosphere is generally small. In particular, no noticeable change in upward propagating planetary wave flux from the lower atmosphere is found. The temperature response in the polar regions is non-robust and thus, for the model used here, polar ozone loss does not appear to be sensitive to climate change in the lower atmosphere as has been suggested recently. The large interannual variability in the polar regions suggests that simulations longer than 30 years will be necessary for further analysis of the effects in this region. The thesis also addresses the long-standing dilemma that models tend to underestimate the ozone concentration at altitudes 40-75 km, which has important implications for climate change studies in this region. A photochemical box model is used to examine the photochemical aspects of this problem. At 40-55 km, the model reproduces satellite observations to within 10%, thus showing a substantial reduction in the ozone deficit problem. At 60-75 km, however, the model underestimates the observations by up to 35%, suggesting a significant lack of understanding of the chemistry and radiation in this region.
42

Meteoric Aerosols in the Middle Atmosphere

Megner, Linda January 2008 (has links)
This thesis concerns the fate of the meteoric smoke in the Middle Atmosphere, and its effect on ice phenomena such as noctilucent clouds (NLC) and polar stratospheric clouds (PSC). The potential role of NLC as tracer for mesospheric processes and variability, and as a tool for monitoring this remote and inaccessible region, has generated substantial interest within the scientific community. The nucleation of ice in such a dry environment is not trivial. Supersaturation is considered too low for homogeneous nucleation. Hence, pre-existing condensation nuclei are deemed necessary, with smoke particles having long been considered the most likely candidate. Here we show that the atmospheric circulation transports meteoric smoke particles away from the polar region before they coagulate large enough to efficiently act as ice condensation nuclei. We also show that the charging of meteoric smoke, in combination with deviations from the mean thermal state, may solve this dilemma by significantly altering the ice nucleation properties of smoke. Thus, while it is highly questionable whether neutral smoke can provide sufficient amounts of condensation nuclei for ice formation at the polar summer mesopause, charged meteoric smoke proves to be a promising candidate to explain mesospheric ice phenomena as we observe them. We further show that the bulk of the meteoric material is transported to the Arctic winter stratosphere, yielding significantly higher concentrations of meteoric smoke in the region of PSC nucleation than has previously been believed. Our new predictions of meteoric smoke in this region may thus shed new light on open questions relating to PSC nucleation.
43

Observations of water vapour in the middle atmosphere

Lossow, Stefan January 2008 (has links)
Water vapour is the most important greenhouse gas and plays a fundamental role in the climate system and for the chemistry of the Earth's atmosphere. This thesis presents observations of water vapour in the middle atmosphere with a particular focus on the mesosphere. The majority of these observations presented in this thesis have been performed by the Swedish satellite Odin, providing global observations since 2001. Further observations come from the Hygrosonde-2 campaign in December 2001 based on balloon and rocket-borne measurements. A general overview of Odin's water vapour measurements in the middle atmosphere is given. The optimisation of the mesospheric water vapour retrieval is presented in detail. The analysis of the observations has focused mainly on different dynamical aspects utilising the characteristic of water vapour as a dynamical tracer in the middle atmosphere. One application is the mesospheric part of the semi-annual oscillation (SAO). The observations reveal that this oscillation is the dominant pattern of variability between 30°S and 10°N in the mesosphere up to an altitude of 80 km. Above 90 km the SAO is dominating at all latitudes in the tropics and subtropics. It is shown that the SAO exhibits a distinct phase change between 75 km and 80 km in the tropical region. This thesis also presents the first satellite observations of water vapour in the altitude range between 90 km and 110 km, extending the observational database up into the lower thermosphere. In the polar regions water vapour exhibits the annual maximum during winter time above 95 km, mainly caused by upwelling during this season. This behaviour is different from that observed in the subjacent part of the mesosphere where the annual maximum occurs during summer time. The Hygrosonde-2 campaign provided a high resolution measurement of water vapour in the vicinity of the polar vortex edge. This edge prevents horizontal transport causing different water vapour characteristics inside and outside the polar vortex. The observations show that this separating behaviour extends high up into the mesosphere. Small scale transitions in the Hygrosonde-2 profile between conditions inside and outside the vortex coincided with wind shears caused by gravity waves.
44

Rocket-borne in situ measurements in the middle atmosphere

Hedin, Jonas January 2009 (has links)
The Earth's mesosphere and lower thermosphere in the altitude range 50-130 km is a fascinating part of our atmosphere. Complex interactions between radiative, dynamical, microphysical and chemical processes give rise to several prominent phenomena, many of those centred around the mesopause region (80-100 km). These phenomena include noctilucent clouds, polar mesosphere summer echoes, the ablation and transformation of meteoric material, and the Earth’s airglow. Strong stratification and small scale interactions are common features of both these phenomena and the mesopause region in general. In order to study interactions on the relevant spatial scales, in situ measurements from sounding rockets are essential for mesospheric research. This thesis presents new measurement techniques and analysis methods for sounding rockets, thus helping to improve our understanding of this remote part of the atmosphere. Considering the need to perform measurements at typical rocket speeds of 1 km/s, particular challenges arise both from the design of selective, sensitive, well-calibrated instruments and from perturbations due to aerodynamic influences. This thesis includes a quantitative aerodynamic analysis of impact and sampling techniques for meteoric particles, revealing a distinct size discrimination due to the particle flow. Optical techniques are investigated for mesospheric ice particle populations, resulting in instrument concepts for accessing smaller particles based on Mie scattering at short ultraviolet wavelengths. Rocket-borne resonance fluorescence measurements of atomic oxygen are critically re-assessed, leading to new calibration concepts based on photometry of O2 airglow emissions. The work presented here also provides important pre-studies for the upcoming PHOCUS rocket campaign from Esrange in July 2010. PHOCUS will address the interaction between three major mesospheric players: meteoric smoke, noctilucent clouds and gas-phase chemistry.
45

Behavior of the atomic oxygen 5577 Ångström emission intensity at mid-latitudes : a climatological view /

Deutsch, Kerry Ann. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 86-97).
46

Tomographic views of the middle atmosphere from a satellite platform

Hultgren, Kristoffer January 2014 (has links)
The middle atmosphere is a very important part of the Earth system. Until recently, we did not realize the importance of the structure of this vaporous shell and of the fundamental role it plays in both creating and sustaining life on the planet. Thanks to the development and improvement of new sounding methods and techniques, our knowledge of the composition of the atmosphere has become more detailed than ever before. We have also learned how to reveal complex interactions between different species and how they react to the incoming solar radiation. The middle part of the Earth’s atmosphere serves as a host for the Polar Mesospheric Clouds. These clouds consist of a thin layer of water-ice particles, only exsisting during the summer months and only close to the poles. There are indications that the occurrence of Polar Mesospheric Clouds may be linked to climate change. It has been pointed out that the first sightings coincide with the industrial revolution. Satellite observations have shown that Polar Mesospheric Clouds have become brighter and possibly more widely distributed during the 20th century. The clouds might therefore be suited as indicators of the variability of the climate - a good reason for studying this night-shimmering phenomena. The clouds can also be used as a proxy for middle atmospheric dynamics. In order to fully utilize Polar Mesospheric Clouds as tracers for atmospheric variability and dynamics, we need to better understand their local properties. The Optical Spectrograph and Infra-Red Imager System (OSIRIS) is one of two instruments installed on the Odin satellite. The optical spectrograph of this instrument observes sunlight scattered by the atmosphere and thus the Polar Mesospheric Clouds. This thesis deals with a tomographic technique that can reconstruct both horizontal and vertical structures of the clouds by using observations from various angles of the atmospheric region. From this information, microphysical properties such as particle sizes and number densities are obtained. The tomographic technique presented in this thesis also provides a basis for a new satellite concept - MATS. The idea behind the MATS satellite mission is to analyze wave activity in the atmosphere over a wide range of spatial and temporal scales, based on the scientific heritage from Odin/OSIRIS and the tomographic algorithms presented in this thesis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper3: Submitted. Paper 4: Manuscript.</p>
47

Dynamics of the Antarctic mesosphere and lower thermosphere / by A. Phillips

Phillips, A (Andre) January 1989 (has links)
Copies of author's previously published articles inserted / Bibliography: leaves 219-226 / xvi, 22l leaves, [5] leaves of plates : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Mawson Institute for Antarctic Research, 1990
48

Comparisons of VHF meteor radar observations in the middle atmosphere with multiple independent remote sensing techniques.

McIntosh, Daniel L. January 2010 (has links)
This thesis describes the development, modification and refinement of a high-powered hybrid Stratospheric Tropospheric (ST)/meteor radar at the University of Adelaide’s Buckland Park (BP) field station. This thesis also describes the process of statistically comparing results obtained from multiple co-located independent measurement sources. Also included are statistical comparisons made between meteor radars at BP,Darwin, Northern Territory, and Davis Station, Antarctica, with other independent sources of measurement. Previous meteor radar systems have generally been low powered (∼8 kW peak) and as such could only afford low count rates at frequencies of the order of 50 MHz. While it has been shown that the echo detection rate is inversely proportional to frequency to the power of 1.5, the use of lower VHF frequencies within Australia is restricted by government regulations. As such, this has lead to the development of a high powered meteor radar system at 55 MHz which has served to facilitate higher echo rates at this frequency. The aim of improving the echo rate is to improve the statistical accuracy of results generated by the meteor technique. Also presented are descriptions of the meteor radar systems used to provide the data for this study and the basic principles of the meteor technique. Basic descriptions of the other systems and the techniques used to provide data for comparison are also presented. Two key components in the development of the high-powered meteor system are the high-powered all-sky crossed-dipole transmit antenna and the high-powered 1:2 splitter-combiner required to drive the antenna. The antenna was designed using standard equations for Yagi-Uda antenna design found in literature and modeled using the EZNEC modeling programe. After successful modeling, the antenna was prototyped and refined into a low powered version to investigate the antenna’s performance characteristics. Once the performance of the antenna was verified, the process of upgrading the antenna to handle the full output power from a VTX transmitter was performed. This upgrade also spawned the design and development of the highpowered 1:2 splitter-combiner which would be used to feed the high-powered version of the antenna. The successful operation of the high-powered system over several periods of observation has allowed for a more in-depth investigation into the statistical reliability of the meteor technique. Along with the comparison of standard atmospheric parameters, i.e. temperatures and wind velocity, the high-powered system has allowed for the verification of the relationship between echo rate and radar parameters found by McKinley, which is frequently referred to in many papers dealing with meteor observations. Along with the comparisons made with the results from the high-powered meteor radar system at BP, comparisons of atmospheric parameters derived from meteor observations and other techniques were made at Davis Station and Darwin. Of particular interest is the unique comparison of atmospheric winds made at Davis between two independent meteor radar systems and a Medium Frequency (MF) radar. Previous comparison studies have only enjoyed the benefit of having two independent sources of measurement to compare and as such have not allowed for a unique solution to be obtained for the uncertainties of the techniques using the method of Hocking et al. [2001]. Davis Station is unique in that it has two independent meteor radars in addition to a MF radar. This has enabled for the reduction in the number of degrees of freedom in the statistical comparison process, and as such has allowed for unique solutions to be determined for the uncertainties when comparing two independent techniques; i.e. meteor and MF wind comparisons. Atmospheric temperatures in the Mesospheric and Lower Thermospheric (MLT) region were determined through the use of meteor diffusion coefficients and derived atmospheric pressure models at Davis Station, BP and Darwin. Comparisons are made between the meteor technique and other co-located independent measurements. These include; airglow, satellite and falling sphere measurements at Davis Station, airglow and two independent satellite measurements at BP and two independent satellite observations at Darwin. This thesis as a whole demonstrates the successful operation of the highpowered ST/meteor hybrid radar at BP. It also demonstrates the successful comparisons of MLT winds and temperatures made between meteor radar and other independent sources of MLT measurements. The validation of using the high-powered meteor radar at BP coupled with the successful comparison of atmospheric parameters derived using the meteor technique and other forms of MLT observations serves to re-affirm the statistical accuracy and benefit of the meteor technique in observations of the MLT region. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1474902 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2010
49

Observação de oscilações de 3-4 dias na mesosfera-ionosfera equatorial.

SILVA, Leide Pricila da. 17 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-17T19:57:09Z No. of bitstreams: 1 LEIDE PRICILA DA SILVA – DISSERTAÇÃO (PPGFísica) 2015.pdf: 15628100 bytes, checksum: 6c279dc226419936cd83d14dd259bcab (MD5) / Made available in DSpace on 2018-10-17T19:57:09Z (GMT). No. of bitstreams: 1 LEIDE PRICILA DA SILVA – DISSERTAÇÃO (PPGFísica) 2015.pdf: 15628100 bytes, checksum: 6c279dc226419936cd83d14dd259bcab (MD5) Previous issue date: 2015-08-07 / Capes / Foi investigado o acoplamento vertical em baixas latitudes no sistema atmosfera ionosfera na região MLT equatorial impulsionado pela onda de 3-4 dias. Neste trabalho, se identifi cou eventos da onda 3-4 dias durante o per odo de janeiro a dezembro de 2005 nos ventos neutros obtidos por medições de radar localizados em São João do Cariri-PB, Brasil. A variação de 3-4 dias nas correntes elétricas ionosféricas na região E registrado por perturbações no campo geomagnético, foi estudada através de 4 magnetômetros localizados na região equatorial. Os resultados mostraram que as oscilações ocorridas nos ventos zonais em fevereiro-março, maio-junho, agosto e outubro-novembro, são compatíveis com a propagação de ondas ultra-rápido Kelvin. A estrutura de fase vertical foi descendente, compatível com a energia da onda ascendente, e comprimentos de onda verticais de cerca de 45 km foram encontrados nos primeiro, segundo e quarto eventos, o terceiro evento apresenta comprimento de onda vertical de 62 km. Os resultados mostraram eventos quase simultâneos da onda de 3-4 dias no campo geomagnético e nos ventos MLT, cuja propagação é para leste, que pode ser interpretado como devido à onda ultra-rápida de Kelvin, exceto para o terceiro acontecimento que mostrou propagação para oeste. O parâmetro que parece ser afetado é o dínamo campo elétrico. / Vertical coupling in the low latitude atmosphere-ionosphere system driven by the 3-4 day wave in the equatorial MLT region was investigated. In this work a 3-4 day wave event during the period from January to December of 2005 identi ed in the neutral winds by radar measurements located at São João do Cariri-PB, Brazil. The 3-4 day variation in the ionospheric electric currents in the E region registered by perturbations in the geomagnetic eld, was detected in the data from 4 magnetometer located in the equatorial region. The results showed that only the oscillations that occurred in the zonal winds in February-March, May-June, August, and October-November, are compatible with the ultra-fast Kelvin wave propagation. The vertical phase structure was descendent, compatible with ascending wave energy, and vertical wavelengths of about 45 km were found for in the rst, second and fourth events, the third event 62 km. The results showed quasi-simultaneous 3-4 day oscillation in the geomagnetic eld and in the MLT winds, in which the of propagation is eastward, it can be interpreted as due to ultra-fast Kelvin wave, except for the third event that showed westward propagation. The parameter that appears to be a a ected is the dynamo electric eld.
50

Observação da maré lunar nas medidas de luminescência atmosférica equatorial por fotômetro multicanal

Kushiator, Bismark Abeku Nyamekye 19 May 2017 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2017-11-14T13:00:58Z No. of bitstreams: 1 PDF - Bismark Abeku Nyamekye Kushiator.pdf: 1029542 bytes, checksum: 85fec38cb146fdae2ce891a5cb865616 (MD5) / Made available in DSpace on 2017-11-14T13:00:58Z (GMT). No. of bitstreams: 1 PDF - Bismark Abeku Nyamekye Kushiator.pdf: 1029542 bytes, checksum: 85fec38cb146fdae2ce891a5cb865616 (MD5) Previous issue date: 2017-05-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Atmospheric airglow measurements obtained by means of a multichannel photometer in the equatorial region of São João do Cariri, Brazil (7.4 ºS, 36.5 ºO) was used to identify and characterize variations associated with lunar tide. The solar time luminescence data of the three emissions; OH (6, 2), O155577 and 𝑂2(0−1) were smoothed with an average of three months to represent one month in order to reduce variability. The three emissions were subjected to spectral analysis using the Lomb-Scargle peridogram to identify the presence of tidal periodicities of each emission of airglow. The residual from each emission were obtained as a result of the subtraction of the reconstructed composite day using the components diurna, semidiurna and terdiuna of the solar tide, for each three months of measurements were used. This elimination of solar tide signals produced residual emissions of each data that are converted to lunar time and subjected to harmonic analysis to obtain the monthly amplitudes and phases of the lunar semidiurnal component for each of the three emissions. The time series obtained on a composite lunar day shows the lunar component. From the analysis of the data it was possible to identify the signature of the semidiurnal lunar tide in each emission throughout the year of 2004 in the equatorial region. / Medidas da luminescência atmosférica obtidas através de fotômetro multicanal na região equatorial em São João do Cariri, Brasil (7,4 ºS; 36,5ºO) são usadas para identificar e caracterizar variações associadas à maré lunar. Os dados de luminescência de tempo solar das três emissões; OH (6, 2), OI5577 e 𝑂2 (0- 1) foram suavizados com uma média de três meses para representar um mês, a fim de reduzir a variabilidade. As três emissões foram submetidas a análise espectral utilizando o peridograma de Lomb-Scargle para identificar a presença das periodicidades das marés em cada emissão de luminescência. Os resíduos de cada emissão foram obtidos como resultado da subtração do dia composto reconstruído utilizando as componentes diurna, semidiurna e terdiuna da maré solar. Para isto, foram utilizados três meses de medidas. Esta eliminação de sinais de maré solar produze emissões residuais de cada dado que são convertidas para o tempo lunar e submetidas a análises harmônicas para obter as amplitudes e fases mensais da componente semidiurna lunar para cada uma das três emissões. As séries temporais obtidas em um dia lunar composto mostra o componente lunar. A partir da análise dos dados foi possível identificar a assinatura da maré lunar semidiurna em cada emissão ao longo do ano de 2004 na região equatorial.

Page generated in 0.0583 seconds