• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Développement d’un outil bio-informatique pour l’annotation des associations entre gènes et métabolites basée sur les voies métaboliques

Therrien-Laperrière, Sandra 11 1900 (has links)
No description available.
22

Architektura regulační sítě metabolismu / The architecture of regulatory network of metabolism

Geryk, Jan January 2013 (has links)
The thesis focus on the modularity of metabolic network and foremost on the architecture of regulatory network representing direct regulatory interactions between metabolites and enzymes. I focus on the "modularity measure" in my first work. Modularity measure is quantitative measure of network modularity commonly used for module identification. It was showed that algorithms using this measure can produce modules that are composed of two clearly pronounced sub-modules. Maximum size of module for which there is a risk that is is composed of two sub-modules is called resolution limit of modularity measure. In my first work I generalize resolution limit of modularity measure. The generalized version provide insight to the origin of resolution limit in the null-model used by modularity measure. Moreover it is showed that the risk of omitting of sub-modular structures applies for bigger modules than mentioned in the original publication. The second work is focused on the question how does the modular structure of E. coli metabolic network change if we add regulatory interactions. I find that the modularity of modular core of network slightly increase after regulatory edges addition. The modularity increase is significant with respect to randomized ensemble of regulatory networks. Identified modules...
23

Applying systems biology methods to identify putative drug targets in the metabolism of the malaria pathogen Plasmodium falciparum

Huthmacher, Carola 27 December 2010 (has links)
Trotz weltweiter Bemühungen, die Tropenkrankheit Malaria zurückzudrängen, erkranken jährlich bis zu einer halben Milliarde Menschen an Malaria mit der Folge von über einer Million Todesopfern. Da zur Zeit eine wirksame Impfung nicht in Sicht ist und sich Resistenzen gegen gängige Medikamente ausbreiten, werden dringend neue Antimalariamittel benötigt. Um die Suche nach neuen Angriffsorten für Medikamente zu unterstützen, untersucht die vorliegende Arbeit mit einem rechnergestützten Ansatz den Stoffwechsel von Plasmodium falciparum, dem tödlichsten Malaria-Erreger. Basierend auf einem aus dem aktuellen Forschungsstand rekonstruierten metabolischen Netzwerk des Parasiten werden metabolische Flüsse für die einzelnen Stadien des Lebenszyklus von P. falciparum berechnet. Dabei wird ein im Rahmen dieser Arbeit entwickelter Fluss-Bilanz-Analyse-Ansatz verwendet, der ausgehend von in den jeweiligen Entwicklungsstadien gemessenen Genexpressionsprofilen entsprechende Flussverteilungen ableitet. Für das so ermittelte stadienspezifische Flussgeschehen ergibt sich eine gute Übereinstimmung mit bekannten Austauschprozessen von Stoffen zwischen Parasit und infiziertem Erythrozyt. Knockout Simulationen, die mit Hilfe einer ähnlichen Vorhersagemethode durchgeführte werden, decken essentielle metabolische Reaktionen im Netzwerk auf. Fast 90% eines Sets von experimentell bestimmten essentiellen Enzymen wird wiedergefunden, wenn die Annahme getroffen wird, dass Nährstoffe nur begrenzt aus der Wirtszelle aufgenommen werden können. Die als essentiell vorhergesagten Enzyme stellen mögliche Angriffsorte für Medikamente dar. Anhand der Flussverteilungen, die für die einzelnen Entwicklungsstadien berechnet wurden, können diese potenziellen Targets nach Relevanz für Malaria Prophylaxe und Therapie sortiert werden, je nachdem, in welchem Stadium die Enzyme als aktiv vorhergesagt wurden. Dies bietet einen vielversprechenden Startpunkt für die Entwicklung von neuen Antimalariamitteln. / Despite enormous efforts to combat malaria, the disease still afflicts up to half a billion people each year, of which more than one million die. Currently no effective vaccine is within sight, and resistances to antimalarial drugs are wide-spread. Thus, new medicines against malaria are urgently needed. In order to aid the process of drug target detection, the present work carries out a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. A comprehensive compartmentalized metabolic network is assembled, which is able to reproduce metabolic processes known from the literature to occur in the parasite. On the basis of this network metabolic fluxes are predicted for the individual life cycle stages of P. falciparum. In this context, a flux balance approach is developed to obtain metabolic flux distributions that are consistent with gene expression profiles observed during the respective stages. The predictions are found to be in good accordance with experimentally determined metabolite exchanges between parasite and infected erythrocyte. Knockout simulations, which are conducted with a similar approach, reveal indispensable metabolic reactions within the parasite. These putative drug targets cover almost 90% of a set of experimentally confirmed essential enzymes if the assumption is made that nutrient uptake from the host cell is limited. A comparison demonstrates that the applied flux balance approach yields target predictions with higher specificity than the topology based choke-point analysis. The previously predicted stage-specific flux distributions allow to filter the obtained set of drug target candidates with respect to malaria prophylaxis, therapy or both, providing a promising starting point for further drug development.
24

The synthesizing capacity of metabolic networks

Handorf, Thomas 12 September 2008 (has links)
In dieser Arbeit wird das Konzept der Scopes und auf großskalige metabolische Netzwerke angewendet. Scopes beschreiben die Synthesekapazität eines Netzwerkes, wenn dieses mit bestimmten Ausgangsstoffen versorgt wird. Dabei werden für definierte Ausgangsstoffe alle durch das Netzwerk synthetisierbaren Stoffe berechnet. In dieser Arbeit wird insbesondere das Referenznetzwerk der KEGG-Datenbank untersucht, welches Reaktionen unabhängig von ihrem Vorkommen in unterschiedlichen Organismen enthält. Es werden die Synthesekapazitäten systematisch für alle Einzelstoffe und für einige Stoffkombinationen errechnet und untersucht. Der Effekt von Kofaktoren wird analysiert. Desweiteren ist es möglich, Kombinationen von Ausgangsstoffen zu finden, aus denen wichtige Metabolite der Zelle produziert werden können. Somit kann der Nährstoffbedarf einer Zelle abgeschätzt werden. Im zweiten Teil wird eine Hierarchie der Scopes basierend auf Inklusionsrelationen zwischen diesen erstellt. Diese Hierarchie kann mit der chemischen Komposition der enthaltenen Stoffe, also mit deren chemischen Bausteinen, den Elementen oder Gruppen, in Verbindung gebracht werden. Dabei erhalten Scopes mit sehr häufigen Bausteinkombinationen eine hervorgehobene Rolle in der Hierarchie. Die Scopehierarchie kann mit der Autotrophie des Netzwerkes in Zusammenhang gebracht werden. Der dritte Teil beschäftigt sich mit möglichen Änderungen in der Topologie des Netzwerkes und deren Auswirkungen auf die Scopes. Es stellt sich heraus, dass die Synthesekapazitäten sich im allgemeinen sehr robust gegenüber solchen Veränderungen verhalten. Die Methodik ist im übrigen auch geeignet um Lücken im biochemischen Wissen aufzuspühren und dadurch die Kenntnisse über den Metabolismus zu erweitern. Außerdem zeigen die getätigten Analysen evolutionäre Ziele hinter der Konstruktion metabolischer Netzwerke auf. / In this work, the concept of scopes is introduced and applied to large scale metabolic networks. The scopes represent functional measures, describing the synthesizing capacity of a metabolic network if supplied with a predefined set of resources. For a given set of initial metabolites, the seed, all possible products are determined using the stoichiometric information of the network. Specifically, the organism independent KEGG reference network is analyzed. The first part of this work describes possible applications of the scopes, including the determination of the synthesizing capacities of different compounds and sets of compounds, the study of the effect of cofactors on the capacities of metabolic networks or the identification of possible nutrient sets required for the maintenance of a cell. In the second part, the scopes of different seed compounds are systematically analyzed and put in relation to one another. A hierarchy is generated representing the inclusion relations of the scopes. Interestingly, this hierarchy reflects the chemical composition, i.e. the chemical elements or chemical groups of the contained compounds. Scopes containing frequently used chemical elements or groups are represented by high degree nodes in this hierarchy. A subhierarchy of these characteristic scopes is described and brought in relation to the autotrophy of the network. In the third part, the effect of modifications in the topology of metabolic networks is analyzed. It turns out that the scopes are generally robust against the deletion of single and even multiple reactions. Also, the influence of limitations in the metabolic knowledge on the results is discussed and possibilities for improvements are indicated. The performed analyses reveal evolutionary objectives behind the construction of metabolic networks. In particular, hypotheses about design, autotrophy or robustness of metabolic networks can be inferred.
25

Study of the evolution of symbiosis at the metabolic level using models from game theory and economics / L’étude de l’évolution de la symbiose au niveau métabolique en utilisant des modèles de la théorie des jeux et de l’économie

Wannagat, Martin 04 July 2016 (has links)
Le terme symbiose recouvre tous types d'interactions entre espèces et peut être défini comme une association étroite d'espèces différentes vivant ensemble. De telles interactions impliquant des micro-organismes présentent un intérêt particulier pour l'agriculture, la santé, et les questions environnementales. Tous les types d'interactions entre espèces tels que le mutualisme, le commensalisme, et la compétition, sont omniprésents dans la nature et impliquent souvent le métabolisme. La libération de métabolites par des organismes dans l'environnement permet à d'autres individus de la même espèce ou de différentes espèces de les récupérer pour leur usage propre. Dans cette thèse, nous étudions comment les interactions entre espèces façonnentl'environnement. Nous examinons les questions de (i) quels sont les besoins minimaux en éléments nutritifs pour établir la croissance, et (ii) quels métabolites peuvent être échangés entre un organisme et son environnement. L'énumération de tous les ensembles minimaux stoechiométriques de précurseurs et de tous les ensembles minimaux de métabolites échangés,en utilisant des modèles complets de réseaux métaboliques, fournit un meilleur aperçu des interactions entre les espèces. Dans un environnement spatialement homogène, les métabolites qui sont libérés dans un tel environnement sont partagés par tous les individus. Le problème qui se pose alors est de savoir comment les tricheurs, les individus qui profitent des métabolites libérés sans contribuer au bien public, peuvent être exclus de la population. Ceci et d'autres configurations ont déjà été modélisées avec des approches de la théorie des jeux et de l'économie. Nous examinons comment les concepts d'ensembles minimaux de précurseurs stoechiométriques et d'ensembles minimaux de composés échangés peuvent être introduits dans ces modèles / Symbiosis, a term that brings all types of species interaction under one banner, is defined as a close association of different species living together. Species interactions that comprise microorganisms are of particular interest for agriculture, health, and environmental issues. All kinds of species interactions such as mutualism, commensalism, and competition, are omnipresent in nature and occur often at the metabolic level. Organisms release metabolites to the environment which are then taken up by other individuals of the same or of different species. In this thesis, we study how species interactions shape the environment. We examine the questions of (i) what are the minimal nutrient requirements to sustain growth, and (ii) which metabolites can be exchanged between an organism and its environment. Enumerating all minimal stoichiometric precursor sets, and all minimal sets of exchanged metabolites, using metabolic network models, provide a better insight into species interactions. In a spatially homogeneous environment, the metabolites that are released to such an environment are shared by all individuals. The problem that then arises is how cheaters, individuals that profit from the released metabolites without contributing to the public good, can be prevented from the population. This and other configurations were already modeled with approaches from game theory and economics. We examine how the concepts of minimal stoichiometric precursor sets and minimal sets of exchanged compounds can be introduced into such models
26

Macroscopic Modeling of Metabolic Reaction Networks and Dynamic Identification of Elementary Flux Modes by Column Generation

Oddsdóttir, Hildur Æsa January 2015 (has links)
In this work an intersection between optimization methods and animal cell culture modeling is considered. We present optimization based methods for analyzing and building models of cell culture; models that could be used when designing the environment cells are cultivated in, i.e., medium. Since both the medium and cell line considered are complex, designing a good medium is not straightforward. Developing a model of cell metabolism is a step in facilitating medium design. In order to develop a model of the metabolism the methods presented in this work make use of an underlying metabolic reaction network and extracellular measurements. External substrates and products are connected via the relevant elementary flux modes (EFMs). Modeling from EFMs is generally limited to small networks, because the number of EFMs explodes when the underlying network size increases. The aim of this work is to enable modeling with more complex networks by presenting methods that dynamically identify a subset of the EFMs. In papers A and B we consider a model consisting of the EFMs along with the flux over each mode. In paper A we present how such a model can be decided by an optimization technique named column generation. In paper B the robustness of such a model with respect to measurement errors is considered. We show that a robust version of the underlying optimization problem in paper A can be formed and column generation applied to identify EFMs dynamically. In papers C and D a kinetic macroscopic model is considered. In paper C we show how a kinetic macroscopic model can be constructed from the EFMs. This macroscopic model is created by assuming that the flux along each EFM behaves according to Michaelis-Menten type kinetics. This modeling method has the ability to capture cell behavior in varied types of media, however the size of the underlying network is a limitation. In paper D this limitation is countered by developing an approximation algorithm, that can dynamically identify EFMs for a kinetic model. / I denna avhandling betraktar vi korsningen mellan optimeringsmetoder och modellering av djurcellodling.Vi presenterar optimeringsbaserade metoder för att analysera och bygga modeller av cellkulturer. Dessa modeller kan användas vid konstruktionen av den miljö som cellerna ska odlas i, dvs, medium.Eftersom både mediet och cellinjen är komplexa är det inte okomplicerat att utforma ett bra medium. Att utveckla en modell av cellernas ämnesomsättning är ett steg för att underlätta designen av mediet. För att utveckla en modell av metabolismen kommer de metoder som används i detta arbete att utnyttja ett underliggande metaboliskt reaktions\-nätverk och extracellulära mätningar. Externa substrat och produkter är sammankopplade via de relevanta elementära metaboliska vägarna (EFM).Modellering med hjälp av EFM är i allmänhet begränsad till små nätverk eftersom antalet EFM exploderar när de underliggande nätverket ökar i storlek. Målet med detta arbete är att möjliggöra modellering med mer komplexa nätverk genom att presentera metoder som dynamiskt identifierar en delmängd av EFM. I artikel A och B betraktar vi en modell som består av EFM och ett flöde över varje EFM.I artikel A presenterar vi hur en sådan modell kan bestämmas med hjälp av en optimeringsteknik som kallas kolumngenerering.I artikel A undersöker vi hur robust en sådan modell är med avseende till mätfel. Vi visar att en robust version av det underliggande optimeringsproblemet i artikel A kan konstrueras samt att kolumngenerering kan appliceras för att identifiera EFM dynamiskt. Artikel C och D behandlar en kinetisk makroskopisk modell. Vi visar i artikel C hur en sådan modell kan konstrueras från EFM.Denna makroskopiska modell är skapad genom att anta att flödet genom varje EFM beter sig enligt Michaelis-Menten-typ av kinetik. Denna modelleringsmetod har förmågan att fånga cellernas beteende i olika typer av media, men storleken på nätverket är en begränsning.I artikel D hanterar vi denna begränsing genom att utveckla en approximationsalgoritm som identifierar EFM dynamiskt för en kinetisk modell. / <p>QC 20150827</p>
27

Interval and Possibilistic Methods for Constraint-Based Metabolic Models

Llaneras Estrada, Francisco 23 March 2011 (has links)
This thesis is devoted to the study and application of constraint-based metabolic models. The objective was to find simple ways to handle the difficulties that arise in practice due to uncertainty (knowledge is incomplete, there is a lack of measurable variables, and those available are imprecise). With this purpose, tools have been developed to model, analyse, estimate and predict the metabolic behaviour of cells. The document is structured in three parts. First, related literature is revised and summarised. This results in a unified perspective of several methodologies that use constraint-based representations of the cell metabolism. Three outstanding methods are discussed in detail, network-based pathways analysis (NPA), metabolic flux analysis (MFA), and flux balance analysis (FBA). Four types of metabolic pathways are also compared to clarify the subtle differences among them. The second part is devoted to interval methods for constraint-based models. The first contribution is an interval approach to traditional MFA, particularly useful to estimate the metabolic fluxes under data scarcity (FS-MFA). These estimates provide insight on the internal state of cells, which determines the behaviour they exhibit at given conditions. The second contribution is a procedure for monitoring the metabolic fluxes during a cultivation process that uses FS-MFA to handle uncertainty. The third part of the document addresses the use of possibility theory. The main contribution is a possibilistic framework to (a) evaluate model and measurements consistency, and (b) perform flux estimations (Poss-MFA). It combines flexibility on the assumptions and computational efficiency. Poss-MFA is also applied to monitoring fluxes and metabolite concentrations during a cultivation, information of great use for fault-detection and control of industrial processes. Afterwards, the FBA problem is addressed. / Llaneras Estrada, F. (2011). Interval and Possibilistic Methods for Constraint-Based Metabolic Models [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10528 / Palancia
28

Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis

Triana Dopico, Julián 03 September 2014 (has links)
The current investigation is aimed at the reconstruction and analysis of genome-scale metabolic models. Specifically, it is focused on the use of mathematical-computational simulations to predict the cellular metabolism behavior towards bio-products production. The photosynthetic cyanobacterium Synechococcus elongatus PCC7942 was studied as biological system. This prokaryotic has been used in several studies as a biological platform for the synthesis of several substances for industrial interest. These studies are based on the advantage of autotrophic systems, which basically requires light and CO2 for growth. The main objective of this thesis is the integration of different types of biological information, whose interaction can be extract applicable knowledge for economic interests. To this end, our study was addressed to the use of methods for modeling, analyzing and predicting the behavior of metabolic phenotypes of cyanobacterium. The work has been divided into chapters organized sequentially, where the starting point was the in silico metabolic reconstruction network. This process intent to join in a metabolic model of all chemical reactions codified in genome. The stoichiometric coefficients of each reactions, can be arranged into a sparse matrix (stoichiometric matrix), where the columns corresponds to reactions and rows to metabolites. As a result of this process the first model was obtained (iSyf646) than later was updated to another (iSyf714). Both were generated from data ¿omics published in databases, scientific reviews as well as textbooks. To validate them, each one of the stoichiometric matrix together with relevant constraints were used by simulation techniques based on linear programming. These reconstructions have to be flexible enough to allow autotrophic growth under which the organism grows in nature. Once the reconstructions were validated, environmental variations can be simulated and we were able to study its effects through changes in outline system parameters. Subsequently, synthetic capabilities were evaluated from the in silico models in order to design metabolic engineering strategies. To do this a genetic variation was simulated in reactions network, where the disturbed stoichiometric matrix was the object of the quadratic optimization methods. As a results sets of optimal solutions were generated to enhanced production of various metabolites of energetic interest such as: ethanol, n-butanol isomers, lipids and hydrogen, as well as lactic acid as the compound which is an interest to the industry. Furthermore, functionally coupled reactions have been studied and have been weighted to the importance in the production of metabolites. Finally, genome-scale metabolic models allow us to establish criteria to integrate different types of data to help of find important points of regulation that may be subject to genetic modification. These regulatory centers have been investigated under drastic changes of illumination and have been inferred operational principles of cyanobacterium metabolism. In general, this thesis presents the metabolic capabilities of photosynthetic cyanobacterium Synechococcus elongatus PCC7942 to produce substances of interest, being a potential biological platform for clean and sustainable production. / Triana Dopico, J. (2014). Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39351 / TESIS
29

Identification des motifs de voisinage conservés dans des contextes métaboliques et génomiques / Mining conserved neighborhood patterns in metabolic and genomic contexts

Zaharia, Alexandra 28 September 2018 (has links)
Cette thèse s'inscrit dans le cadre de la biologie des systèmes et porte plus particulièrement sur un problème relatif aux réseaux biologiques hétérogènes. Elle se concentre sur les relations entre le métabolisme et le contexte génomique, en utilisant une approche de fouille de graphes.Il est communément admis que des étapes enzymatiques successives impliquant des produits de gènes situés à proximité sur le chromosome traduisent un avantage évolutif du maintien de cette relation de voisinage au niveau métabolique ainsi que génomique. En conséquence, nous choisissons de nous concentrer sur la détection de réactions voisines catalysées par des produits de gènes voisins, où la notion de voisinage peut être modulée en autorisant que certaines réactions et/ou gènes soient omis. Plus spécifiquement, les motifs recherchés sont des trails de réactions (c'est-à-dire des séquences de réactions pouvant répéter des réactions, mais pas les liens entre elles) catalysées par des produits de gènes voisins. De tels motifs de voisinage sont appelés des motifs métaboliques et génomiques.De plus, on s'intéresse aux motifs de voisinage métabolique et génomique conservés, c'est-à-dire à des motifs similaires pour plusieurs espèces. Parmi les variations considérées pour un motif conservé, on considère l'absence/présence de réactions et/ou de gènes, ou leur ordre différent.Dans un premier temps, nous proposons des algorithmes et des méthodes afin d'identifier des motifs de voisinage métabolique et génomique conservés. Ces méthodes sont implémentées dans le pipeline libre CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods). À l'aide de CoMetGeNe, on analyse une sélection de 50 espèces bactériennes, en utilisant des données issues de la base de connaissances KEGG.Dans un second temps, un développement de la détection de motifs conservés est exploré en prenant en compte la similarité chimique entre réactions. Il permet de mettre en évidence une classe de modules métaboliques conservés, caractérisée par le voisinage des gènes intervenants. / This thesis fits within the field of systems biology and addresses a problem related to heterogeneous biological networks. It focuses on the relationship between metabolism and genomic context through a graph mining approach.It is well-known that succeeding enzymatic steps involving products of genes in close proximity on the chromosome translate an evolutionary advantage in maintaining this neighborhood relationship at both the metabolic and genomic levels. We therefore choose to focus on the detection of neighboring reactions being catalyzed by products of neighboring genes, where the notion of neighborhood may be modulated by allowing the omission of several reactions and/or genes. More specifically, the sought motifs are trails of reactions (meaning reaction sequences in which reactions may be repeated, but not the links between them). Such neighborhood motifs are referred to as metabolic and genomic patterns.In addition, we are also interested in detecting conserved metabolic and genomic patterns, meaning similar patterns across multiple species. Among the possible variations for a conserved pattern, the presence/absence of reactions and/or genes may be considered, or the different order of reactions and/or genes.A first development proposes algorithms and methods for the identification of conserved metabolic and genomic patterns. These methods are implemented in an open-source pipeline called CoMetGeNe (COnserved METabolic and GEnomic NEighborhoods). By means of this pipeline, we analyze a data set of 50 bacterial species, using data extracted from the KEGG knowledge base.A second development explores the detection of conserved patterns by taking into account the chemical similarity between reactions. This allows for the detection of a class of conserved metabolic modules in which neighboring genes are involved.
30

Dynamique d'un réseau métabolique avec un modèle à base de contraintes : approche par échantillonnage des trajectoires solutions / Dynamic of metabolic network with constraint-based model : an approach by sampling of solution trajectories

Duigou, Thomas 13 May 2015 (has links)
À l’issue de ce travail de thèse, je propose une approche basée sur le formalisme des modèles à base de contraintes, pour étudier la dynamique d’un système métabolique. En associant l’échantillonnage de l’espace des solutions avec l’utilisation d’une contrainte de « faisabilité » entre les périodes de temps considérées, cette approche permet de modéliser la dynamique d’un système métabolique en prenant en compte la variabilité des mesures expérimentales. La contrainte de faisabilité entre les périodes permet de garantir que chaque « trajectoire solution » correspond à une succession de cartes de flux qui conduit à des cinétiques de concentrations cohérentes avec les mesures expérimentales. Les populations de trajectoires solutions générées autorisent différents types d’analyses. D’une part, les répartitions de flux prédites peuvent être utilisées afin d’estimer les répartitions de flux les plus plausibles au sein du réseau étudié. D’autre part, la distribution des concentrations prédites permet d’évaluer le modèle utilisé pour étudier le réseau métabolique. Le fait que cette approche soit basée sur le formalisme de la modélisation à base de contraintes permet, moyennant l’utilisation de l’hypothèse d’état stationnaire du système, d’étudier des réseaux métaboliques de taille relativement grande, et d’utiliser des données expérimentales qui sont aisément mesurables, par exemple les concentrations en biomasse et en métabolites extracellulaires. Cette approche par « trajectoires solutions » a été utilisée afin d’étudier la dynamique du métabolisme de Corynebacterium glutamicum, lorsqu’elle est cultivée en condition de limitation en biotine. Les résultats obtenus ont permis d’une part d’attester du fonctionnement de la méthode, et d’autre part de proposer plusieurs hypothèses quant aux phénomènes biologiques qui ont lieu pendant cette condition particulière de croissance. / In this thesis, I propose an approach based on the formalism of constraint-based models to study the dynamics of a metabolic system. By combining the sampling of the solutions space and the use of a "feasibility" constraint between the considered time periods, this approach allows to model the dynamic of a metabolic system taking into account the variability of experimental measurements. The feasibility constraint between time periods ensures that each "solution trajectory" corresponds to a succession of flux maps which leads to some kinetics of concentrations that are consistent with the experimental measurements. The generation of a population of solution trajectories allows several analyses. On the one hand, the predicted flux maps can be used to estimate the most plausible flux within the network studied. On the other hand, the distribution of predicted concentrations enables to assess the model used for studying the metabolic network. The fact that this approach is based on the formalism of constraint-based modeling allows, using the steady-state assumption of the system, to study metabolic networks of relatively large size, and to use experimental data that are easily measurable, such as biomass concentration and extracellular metabolites concentration. This approach by "solution trajectories" has been used to study the dynamics of the metabolism of Corynebacterium glutamicum, when grown under biotin-limited condition. The results allowed, first, to attest the functioning of the method, and second, to propose several hypotheses about biological phenomena that take place during this particular growth condition.

Page generated in 0.083 seconds