• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 23
  • 15
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 169
  • 47
  • 22
  • 19
  • 19
  • 17
  • 16
  • 16
  • 16
  • 15
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and Characterization of Acrylfentanyl Metabolites

Alfredsson, Maria January 2017 (has links)
Acrylfentanyl is a synthetic opioid that has been widely used in the last year. To help in the fight against synthetic drugs two potential metabolites of acrylfentanyl, one monohydroxy and one dihydroxy were synthesized. These metabolites will hopefully later be implemented in the analytical methods for metabolites of acrylfentanyl in urine by the Swedish National Board of Forensic Medicine. To have metabolites for analysis are very important as they are the main target in drug testing. The method used to synthesize the metabolites is a five-step synthesis with an additional 6th step for the dihydroxy metabolite. The methods used in the synthesis includes protection of amine with tert-butyloxycarbonyl, reductive amination with sodium triaceto boronhydride, alkylation and demethylation with boron tribromide. The methods used produced good results with high yields in nearly all steps.
22

Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats

Forkuo, A.D., Ansah, C., Pearson, D., Gertsch, W., Cirello, A., Amaral, A., Spear, J., Wright, Colin W., Rynn, C. 22 December 2017 (has links)
Yes / Background: This study aims at characterizing the in vitro metabolism of cryptolepine using human and rat hepatocytes, identifying metabolites in rat plasma and urine after a single cryptolepine dose, and evaluating the single-dose oral and intravenous pharmacokinetics of cryptolepine in male Sprague Dawley (SD) rats. Methods: The in vitro metabolic profiles of cryptolepine were determined by LC-MS/MS following incubation with rat and human hepatocytes. The in vivo metabolic profile of cryptolepine was determined in plasma and urine samples from Sprague Dawley rats following single-dose oral administration of cryptolepine. Pharmacokinetic parameters of cryptolepine were determined in plasma and urine from Sprague Dawley rats after single-dose intravenous and oral administration. Results: Nine metabolites were identified in human and rat hepatocytes, resulting from metabolic pathways involving oxidation (M2-M9) and glucuronidation (M1, M2, M4, M8, M9). All human metabolites were found in rat hepatocyte incubations except glucuronide M1. Several metabolites (M2, M6, M9) were also identified in the urine and plasma of rats following oral administration of cryptolepine. Unchanged cryptolepine detected in urine was negligible. The Pharmacokinetic profile of cryptolepine showed a very high plasma clearance and volume of distribution (Vss) resulting in a moderate average plasma half-life of 4.5 h. Oral absorption was fast and plasma exposure and oral bioavailability were low. Conclusions: Cryptolepine metabolism is similar in rat and human in vitro with the exception of direct glucuronidation in human. Clearance in rat and human is likely to include a significant metabolic contribution, with proposed primary human metabolism pathways hydroxylation, dihydrodiol formation and glucuronidation. Cryptolepine showed extensive distribution with a moderate half-life. / Funded by Novartis Pharma under the Next Generation Scientist Program.
23

CRISPR-Cas9 Mediated Gene Editing of Secondary Metabolite Gene Clusters in Fusarium graminearum

Hicks, Carmen 14 December 2023 (has links)
Fusarium graminearum is responsible for causing Fusarium head blight in cereals and maize imposing a significant impact in Canadian agriculture. While a handful of secondary metabolites produced by F. graminearum are recognized as contributors to disease virulence, the functions of numerous molecular products arising from biosynthetic gene clusters expressed during infection remain undiscovered. Presented here are the results of CRISPR-Cas9 mediated gene-deletion experiments disrupting core biosynthetic genes from four biosynthetic gene clusters with reported in-planta transcription: C08, C16, C13 and C70. Both wheat head infection assays and coleoptile infection assays were used to evaluate the pathology phenotypes of transformant strains illustrating potential links between C16 and pathogenicity. Culture medium screening experiments using transformant strains were profiled by UHPLC-HRMS and targeted MS2 experiments to confirm the associated secondary metabolite products and attempt to identify unknown secondary metabolites of the biosynthetic gene clusters. While C08 secondary metabolite remained elusive, confirmation of C16 secondary metabolites led to hypotheses regarding their potential connections to the inhibition of plant immune response and untargeted secondary metabolite profiling of the C13/C70 transformant strains suggests that this BGC may have significant implications for global secondary metabolite production.
24

Regulation of S-Adenosyl-L-Methonine Phosphoethanolamine-N-Methyltransferase Activity in Spinach

Drebenstedt, Martina 09 1900 (has links)
The compatible solute glycine betaine accumulates in many plants including spinach (Spinacea oleracea) under conditions of water deficit stress. The precursor to glycine betaine is choline, a ubiquitous metabolite in plants as a component of phosphotidylcholine. In spinach choline is synthesized from phosphocholine, a product of three sequential N-methylations of phosphoethanolamine catalysed by the cytosolic enzyme S-adenosyl-L-methionine: phosphoethanolamine-N-methyltransferase (PEAMT). PEAMT activity shows diurnal changes with peak activity at the end of the photoperiod and a decrease overnight. The activity of this enzyme is up-regulated 2 to 3-fold in salt-stressed plants relative to unstressed plants. The objective of this thesis is to determine how PEAMT activity is regulated in vivo. Thus, PEAMT activity, protein and transcript levels were quantified in spinach leaves from plants subjected to different light and salinity conditions. A spinach PEAMT eDNA sequence was used to over-express recombinant PEAMT in the protein expression vector pET30a (+). The presence of a polyhistidine-tag on the overexpressed protein allowed for purification by a cobalt metal affinity column. The affinity purified protein was used to produce polyclonal antibodies for immunoblot hybridization analysis. For these studies, PEAMT protein was first immunoaffinity purified from soluble extracts prepared from leaves and then the protein subjected to electrophoresis by SDS-p AGE. Enzyme assays and immunoblot analysis show PEAMT activity and protein levels increase and become relatively constant in leaves of plants exposed to continuous light. In continuous darkness, PEAMT activity and protein levels decrease and remain low and constant. Thus the pattern of changes in PEAMT activity levels are associated with changes in PEAMT protein levels. In contrast, Northern blot hybridizations show that under conditions of constant light, peamt transcript levels undergo cyclical changes with peak levels at 20 and 40 h and troughs at 28 and 52 h after the continuous light treatment was imposed. These peaks coincide with the dark and light cycles of the normal photoperiod. The same cyclical changes in peamt transcript levels was seen for plants transferred from a normal photoperiod to continuous darkness. Since these changes persist in the absence of a day/night cue we conclude that peamt transcript levels are circadian-regulated. The peamt transcript levels of control unstressed and salt-stressed plants also show circadian rhythms, however the levels found in salt-stressed plants were 0.5 to 2-fold higher than the controls. Therefore, while salinization of plants increases peamt transcript abundance, it does not alter the circadian rhythm that transcripts of this gene display. Changes in PEAMT activity and protein levels are likely controlled by other as yet unknown post-translational mechanisms, processes that override and obscure operation of a circadian rhythm in regulating the level of peamt transcripts. / Thesis / Master of Science (MS)
25

Comprehensive metabolite analysis in Chlamydomonas reinhardtii : method development and application to the study of environmental and genetic perturbations

Bölling, Christian January 2006 (has links)
This study introduces a method for multiparallel analysis of small organic compounds in the unicellular green alga Chlamydomonas reinhardtii, one of the premier model organisms in cell biology. The comprehensive study of the changes of metabolite composition, or metabolomics, in response to environmental, genetic or developmental signals is an important complement of other functional genomic techniques in the effort to develop an understanding of how genes, proteins and metabolites are all integrated into a seamless and dynamic network to sustain cellular functions. The sample preparation protocol was optimized to quickly inactivate enzymatic activity, achieve maximum extraction capacity and process large sample quantities. As a result of the rapid sampling, extraction and analysis by gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF) more than 800 analytes from a single sample can be measured, of which over a 100 could be positively identified. As part of the analysis of GC-TOF raw data, aliquot ratio analysis to systematically remove artifact signals and tools for the use of principal component analysis (PCA) on metabolomic datasets are proposed. Cells subjected to nitrogen (N), phosphorus (P), sulfur (S) or iron (Fe) depleted growth conditions develop highly distinctive metabolite profiles with metabolites implicated in many different processes being affected in their concentration during adaptation to nutrient deprivation. Metabolite profiling allowed characterization of both specific and general responses to nutrient deprivation at the metabolite level. Modulation of the substrates for N-assimilation and the oxidative pentose phosphate pathway indicated a priority for maintaining the capability for immediate activation of N assimilation even under conditions of decreased metabolic activity and arrested growth, while the rise in 4-hydroxyproline in S deprived cells could be related to enhanced degradation of proteins of the cell wall. The adaptation to sulfur deficiency was analyzed with greater temporal resolution and responses of wild-type cells were compared with mutant cells deficient in SAC1, an important regulator of the sulfur deficiency response. Whereas concurrent metabolite depletion and accumulation occurs during adaptation to S deprivation in wild-type cells, the sac1 mutant strain is characterized by a massive incapability to sustain many processes that normally lead to transient or permanent accumulation of the levels of certain metabolites or recovery of metabolite levels after initial down-regulation. For most of the steps in arginine biosynthesis in Chlamydomonas mutants have been isolated that are deficient in the respective enzyme activities. Three strains deficient in the activities of N-acetylglutamate-5-phosphate reductase (arg1), N2 acetylornithine-aminotransferase (arg9), and argininosuccinate lyase (arg2), respectively, were analyzed with regard to activation of endogenous arginine biosynthesis after withdrawal of externally supplied arginine. Enzymatic blocks in the arginine biosynthetic pathway could be characterized by precursor accumulation, like the amassment of argininosuccinate in arg2 cells, and depletion of intermediates occurring downstream of the enzymatic block, e.g. N2-acetylornithine, ornithine, and argininosuccinate depletion in arg9 cells. The unexpected finding of substantial levels of the arginine pathway intermediates N-acetylornithine, citrulline, and argininosuccinate downstream the enzymatic block in arg1 cells provided an explanation for the residual growth capacity of these cells in the absence of external arginine sources. The presence of these compounds, together with the unusual accumulation of N-Acetylglutamate, the first intermediate that commits the glutamate backbone to ornithine and arginine biosynthesis, in arg1 cells suggests that alternative pathways, possibly involving the activity of ornithine aminotransferase, may be active when the default reaction sequence to produce ornithine via acetylation of glutamate is disabled. / Entwicklung und Anwendung von Methoden zur multiparallelen Analyse von Metaboliten in der einzelligen Grünalge Chlamydomonas reinhardtii, einem der wichtigsten Modellorganismen der Zellbiologie, sind Gegenstand dieser Arbeit. Metabolomanalyse, die umfassende Analyse von Veränderungen der Konzentrationen von Stoffwechselprodukten durch Umweltreize oder genetische und entwicklungsbedingte Signale, ist ein wichtiges Komplement anderer Genomanalysemethoden, um die Integration von Genen, Proteinen und Metaboliten in ein nahtloses und dynamisches Netzwerk zur Aufrechterhaltung der Lebensfunktionen eines Organismus zu verstehen. Die Methode wurde im Hinblick auf schnelle Inaktivierung enzymatischer Aktivität, Maximierung der Extraktionskapazität und Behandlung großer Probenmengen optimiert. Im Ergebnis der Probenaufarbeitung, Extraktion und Analyse mittels Gaschromatographie und Time-Of-Flight-Massenspektrometrie konnten mehr als 800 analytische Signale in Einzelproben dargestellt werden, von denen über 100 identifiziert werden konnten. Die Arbeit stellt methodische Innovationen zur systematischen Erkennung von Artefakten in GC-MS Chromatogrammen und Werkzeuge zur Anwendung der Hauptkomponentenanalyse auf Metabolom-Daten vor. Zellen unter Stickstoff- (N), Phosphor- (P), Schwefel- (S), oder Eisen- (Fe) Mangel zeigen deutliche Unterschiede in ihrer Metabolitenausstattung. Die Anpassung an die einzelnen Nährstoffmangelsituationen ist durch spezifische Änderungen einer Reihe von Metaboliten zentraler Prozesse des Primärstoffwechsels gekennzeichnet. Die Konzentrationsänderungen von Substraten für die Stickstoffassimilation und den oxidativen Pentosephosphatweg deuten darauf hin, dass die Fähigkeit zur schnellen Aktivierung der N-Assimilation auch unter Bedingungen herabgesetzter Stoffwechsel- und Wachstumsaktivität aufrechterhalten wird. Die Akkumulation von 4-Hydroxyprolin unter Schwefelmangel könnte im Zusammenhang stehen mit der Degradation von Proteinen der Chlamydomonas-Zellwand, deren wesentlicher Bestandteil hydroxyprolinreiche Glykoproteine sind und die unter Schwefelmangel aktiv umgebaut wird. Die Anpassung an Schwefelmangel wurde mit größerer zeitlicher Auflösung in Wildtyp-Zellen und Zellen des sac1-Stammes untersucht. SAC1 ist ein zentraler Regulator der Schwefelmangelantwort in Chlamydomonas. Zeitgleiche Ab- und Zunahme von Metaboliten ist ein charakteristisches Element der Anpassung an Schwefelmangel in Wildtypzellen. Die Reaktion von SAC1-Mutanten auf Schwefelmangel ist durch weit reichenden Verlust zur Steuerung von Prozessen gekennzeichnet, die normalerweise zur vorübergehenden oder dauerhaften Anreicherung bestimmter Metabolite führen. Die Verfügbarkeit von Chlamydomonas-Stämmen mit fehlender Enzymaktivität für fast jeden der Schritte der Argininbiosynthese eröffnet die Möglichkeit, das Potential der Metabolitenanalyse zur Untersuchung der Regulation der Aminosäurebiosynthese in photosynthetischen Eukaryoten zur Anwendung zu bringen. Drei Stämme, mit fehlender Aktivität für N-Acetylglutamat-5-phosphat Reduktase (arg1), N2 Acetylornithin-Aminotransferase (arg9) beziehungsweise Argininosuccinat Lyase (arg2) wurden in Bezug auf die Aktivierung ihrer endogenen Argininbiosynthese nach Entzug externer Argininquellen analysiert. Die einzelnen enzymatischen Blocks konnten durch Precursor-Anreicherung, wie die Anhäufung von Argininosuccinat in arg2-Zellen, und Erschöpfung von Intermediaten nachgelagerter Reaktionen, beispielsweise die deutliche Abnahme von N2-Acetylornithin, Ornithin und Argininosuccinat in arg9-Zellen charakterisiert werden. Das unerwartete Vorhandensein von zum Teil das Wildtyp-Niveau überschreitender Mengen von N2-Acetylornithin, Citrullin und Argininosuccinat, die Produkte bzw. Substrate dem enzymatischen Block nachgelagerter Reaktionen in arg1-Zellen sind, bot eine Erklärung für eine noch vorhandene Restkapazität zum Wachstum des arg1-Stamms auch ohne äußere Arginingabe. Der Nachweis dieser Verbindungen sowie die ungewöhnliche Anreicherung von N-Acetylglutamat, der ersten Verbindung, die das Glutamat-Gerüst für die Ornithin- und Argininsynthese bindet, in arg1-Zellen könnte auf alternative Reaktionen, möglicherweise unter Beteiligung von Ornithin-Aminotransferase, zur Synthese von Ornithin hindeuten, die in Erscheinung treten, wenn die Synthesekette nach Acetylierung von Glutamat blockiert ist.
26

Cellular and molecular aspects of the interaction betwen maize and the anthracnose pathogen Colletotrichum graminicola

Torres, Maria F. 01 January 2013 (has links)
Maize anthracnose, caused by the fungus Colletotrichum graminicola, is an economically important species contributing to major yield losses. C. graminicola is a hemibiotroph; initially it invades its host while it is alive, and then it switches to destructive necrotrophic growth and the host is killed. Establishment of compatible interactions by biotrophic pathogens is usually associated with suppression of host defenses and cell death, while necrotrophic pathogens typically secrete phytotoxic compounds and induce cell death. To understand the relationship of hemibiotrophy in C. graminicola to biotrophy and necrotrophy, I compared a compatible and an incompatible interaction, utilizing a non-pathogenic mutant strain that is very similar to the wild type in vitro. I developed an assay to visualize in detail living fungal and host cells during pathogenic and nonpathogenic interactions. My results provided evidence that C. graminicola produces diffusible substances during colonization that predispose nearby living host cells for fungal invasion. My observations further suggested that the mutant is nonpathogenic because it fails to produce these substances. To explore the possibility that the C. graminicola mutant is impaired in the production and/or secretion of one or more secondary metabolites (SM), I characterized the range of SM-associated genes in C. graminicola. C. graminicola has a large and diverse repetoire of these genes, indicating significant capacity for the production of SM. I then characterized the global expression of fungal genes during different developmental phases in both compatible and incompatible interactions. I found that SM-associated genes are expressed during early and late stages of maize infection. Secreted proteins and putative effectors were overrepresented among differentially regulated predicted gene products. There were relatively few differences in expression between the mutant and wild type, suggesting that differences between them may relate to post-transcriptional events. The transcriptional analysis indicated that the mutant was defective very early in biotrophy. This study indicates that biotrophy and necrotrophy coexist in this pathosystem in different cells, and that arrays of differentially regulated and locally expressed genes are involved in maintaining this balance. Understanding the nature of induced susceptibility may lead to new therapeutic targets for management of this damaging disease.
27

Studies on Chicken Hatchability and Its Relation with Egg Yolk Metabolites

Zhang, Yi 03 February 2017 (has links)
No description available.
28

Caracterização do metaboloma sérico de bovinos Nelore e sua potencial associação à eficiência alimentar / Serum metabolite characterization and their potential association with feed efficiency in Nellore cattle

Novais, Francisco José de 07 July 2017 (has links)
A seleção de animais para consumo alimentar residual (RFI) está intrinsecamente associada com a diminuição do consumo matéria seca e é independente do ganho de peso corporal, selecionando animais de eficiência produtiva e econômica, além também de diminuir a emissão de gases de efeito estufa provinda do gado. Neste estudo, amostras de soro de 16 animais selecionados divergentemente para eficiência de alimentação foram coletadas antes do confinamento (dia -21) e avaliadas em uma abordagem metabolômica global, com o objetivo de usar análise diferencial, análise de co-expressão e enriquecimento funcional, identificando marcadores para eficiência de alimentação antes do confinamento. Um analito foi diferencialmente presente entre os animais de baixo e alto RFI. A análise WGCNA identificou 22 e 25 módulos no modo positivo e negativo, respectivamente e, 1 módulo de cada modo foi fortemente associado a RFI (r = 0,53, p-valor <0,05 e r = 0,52, p-valor <0,1 nos modos negativo e positivo, respectivamente). A análise de enriquecimento funcional predize 13 processos biológicos associados à eficiência alimentar, incluindo alterações no metabolismo de vitaminas lipossolúveis, inflamação, estresse oxidativo, metabolismo de aminoácidos e metabolismo de ácidos graxos. Esse trabalho evidencia a possibilidade de se identificar um biomarcador para eficiência alimentar e também sugerem que as diferenças nas respostas ao estresse oxidativo e nos processos inflamatórios já influenciam na variação da eficiência alimentar previamente ao confinamento. / Animal selection for residual feed intake (RFI) is intrinsically associated with decreased consumption of dry matter independent of body weight gain, selecting yielding increased production and economic efficiency but also decreasing the greenhouse gas emission of livestock. In this study, serum samples of 16 animals selected for divergent feed efficiency were collected prior to feedlot (day -21) and evaluated in an untargeted metabolomics approach, with the goal of using differential analysis, co-expression analysis and functional enrichment to identifier markers for feed efficiency prior to the feedlot. One feature was differentially accumulated between low and high RFI. WGCNA analysis identified 22 and 25 modules in positive and negative mode, respectively, of 1 module of each mode was strongly associated with RFI (r= 0.53, p-value <0.05 and r=0.52, p-value < 0.1 to negative and positive mode, respectively). Pathway enrichment analysis yielded 13 biological processes associated with feed efficiency including alterations in vitamins liposoluble metabolism, inflammation, oxidative stress, amino acid metabolism and fatty acid metabolism. Our findings suggest the possibility to identify a biomarker for feed efficiency and also discuss that differences in oxidative stress responses and inflammatory processes could explain the feed efficiency variation prior to feedlot.
29

Hormonal Regulation of Glucose Kinetics in Rainbow Trout: Effects of Insulin and Glucagon

Forbes, Johnathon 09 April 2019 (has links)
Mammals and fish rely on hormones to regulate blood glucose levels. The two major glucose regulating hormones are insulin and glucagon. Literature on mammalian insulin and glucagon is quite extensive, however, there is limited information on how these hormones regulate blood glucose levels in fish. The material available for fish mostly pertains to changes in glucose concentration and gene expression of enzymes, but there is no information on the direct influence they have on glucose kinetics. Therefore, the main goal of my thesis is to measure the change in hepatic glucose production and glucose disposal when rainbow trout are administered insulin or glucagon. The beginning of my research focused on insulin. I hypothesized that rainbow trout respond to insulin by decreasing hepatic glucose production and increase glucose disposal, just like mammals. To test this, I infused insulin for 4 hours at 1.5 g insulin kg 1 min-1. I measured glucose disposal (Rd glucose), hepatic glucose production (Ra glucose), and blood glucose concentration. Following insulin administration the glucose fluxes decreased steadily (Rd glucose -37% and Ra glucose -43%). The decline in blood glucose levels follows the difference between Rd and Ra. These results explain why rainbow trout are unable to clear a glucose load to the same degree as mammals. The second major glucose hormone (glucagon) is what interested me for the second part of the research. The limited information on fish glucagon is even less than that of fish insulin. I speculated that trout respond to glucagon the same way mammals do (increase hepatic glucose production and show no affect on glucose disposal). To study the effects of glucagon on glucose fluxes, I tracked the changes in Ra and Rd glucose. The results showed glucose fluxes showed no siginificant difference from baseline in the first few hours, then steadily decreasing until the final time point reached values below baseline. Therefore, these experiments revealed that glucagon follows a similar pattern of effects in trout as mammals. However, the strength of the response to glucagon is different between trout and mammals. This thesis is the first to investigate the effects of insulin and glucagon on glucose kinetics in rainbow trout. I have concluded that rainbow trout have different responses to insulin and glucagon when compared to mammals. Furthermore, fish showing limited glucoregulatory capacity can be partially explained by their responses to insulin and glucagon.
30

Population pharmacokinetics of telapristone and its active metabolite CDB-4453

Morris, Denise Nichole 01 May 2011 (has links)
In this thesis, the population pharmacokinetics of telapristone and its active metabolite, CDB-4453 was evaluated using nonlinear mixed effects modeling (NONMEM®). A two-compartment (parent) one compartment (metabolite) mixture model with first order absorption and elimination adequately described the pharmacokinetics of telapristone and CDB-4453. For the Phase I/II pharmacokinetic analysis (effect of renal and hepatic impairment), telapristone was rapidly absorbed with an absorption rate constant (Ka) of 1.26 h-1. Moderate renal impairment resulted in a 74% decrease in Ka. Population estimates for oral clearance (CL/F) for the high and low clearance groups were 11.6 L/h and 3.34 L/h, respectively. Twenty-five percent of the subjects were allocated to the high clearance group. Apparent volume of distribution for the central compartment (V2/F) was 37.4 L, apparent inter-compartmental clearance (Q/F) was 21.9 L/h, and apparent peripheral volume of distribution for the parent (V4/F) was 120 L. The ratio of the fraction of telapristone converted to CDB-4453 to the distribution volume of CDB-4453 (Fmetest) was 0.20/L and apparent clearance of the metabolite (CLM/F) was 2.43 L/h. For the pharmacokinetic analysis evaluating the effect of food; food decreased the Ka of telapristone (Ka for the fed and fasted state was 0.467 and 5.06 h-1, respectively). Population estimates of the high and low CL/F groups were 12.0 L/h and 3.15 L/h, respectively. Thirty-one percent of the subjects were allocated to the high clearance group. V2/F, Q/F and V/4 and Fmetest were 52.8 L, 7.53 L/h, 84.8 L and 0.193/L, respectively. CLM/F was 2.10 L/h. An external validation was performed using the final parameter estimates from the pooled pharmacokinetic analysis (effect of renal and hepatic impairment and the effect of food). From this pharmacokinetic analysis, Ka for the fed and fasted state was 0.299 and 2.35 h-1, respectively. Population estimates for the high and low CL/F groups were 11.6 L/h and 3.22 L/h, respectively. The percentage of subjects allocated to the high clearance group was 29%. V2/F, Q/F, V/4 and Fmetest were 52.8 L, 11.6 L/h and 93.8 L and 0.186/L, respectively. CLM/F was 2.23 L/h. The final model did not meet the requirement for adequate predictability using the external validation dataset. However, the external validation dataset only included samples with limited early time points. Because of the limited sampling times, it is difficult to make a conclusion about the overall adequacy of the model. An external validation dataset with more extensive sampling will be needed in order to better assess the predictability final model. This is the first comprehensive review of the pharmacokinetics of telapristone and CDB-4453.

Page generated in 0.0755 seconds