Spelling suggestions: "subject:"metaheuristic algorithms""
1 |
Métaheuristiques pour l'optimisation topologique : application à la conception de dispositifs électromagnétiques / Metaheuristics for topology optimization : application to the design of electromagnetic devicesDenies, Jonathan 10 September 2013 (has links)
L'optimisation topologique est une méthode de conception qui permet de définir de manière autonome la topologie, les formes et les dimensions d'un dispositif en vue de répondre de manière optimale à des critères de design. Initialement réservée au dimensionnement de pièces mécaniques, elle s'oriente aujourd’hui vers la conception de dispositifs plus complexes comme ceux rencontrés dans le domaine de l'électromécanique. C'est dans ce cadre que se situe notre travail. Un outil d'optimisation topologique étant formé de l'association d'un algorithme d'optimisation et d'un formalisme de distribution de matière, nous avons dans une première étape comparé différents couplages d'algorithmes métaheuristiques et de formalismes de distribution de matière en vue de choisir le couple qui semble le mieux adapté au problème traité. Cette comparaison nous a conduits à choisir comme outil d'optimisation l'association d'un algorithme génétique et d'une distribution de matière par cellules de Voronoï. Nous avons ensuite examiné comment améliorer les capacités d'exploration et d'exploitation de cet outil. Nous avons, à cet effet, étudié les aspects liés à la gestion de la taille de la population et à l'adaptation des mécanismes de reproduction au caractère graphique du problème. A l'issue de cette deuxième étape, nous avons finalisé un outil d'optimisation que nous avons testé sur des cas d'étude dont la complexité se rapproche de celle rencontrée au niveau industriel. Nous avons ainsi montré le potentiel de notre outil d'optimisation au niveau de la conception dans le cadre de l'électromécanique. / Topology optimization is a method of conception which is able to define the topology, the form and the dimensions of a device with the aim of responding optimally to given design criteria. Initially reserved to the sizing of mechanics parts, this method is directed today towards the conception of more complexes devices as those encountered in applied electromagnetic. It is in this context that our work was performed. A topology optimization tool is made of the combination of an optimization algorithm and a material distribution formalism. In a first step, we compared different couplings of metaheuristic algorithms and material distribution formalisms. This comparison led us to choose as optimization tool for the problem under study, the combination of a genetic algorithm and a distribution of material by Voronoi cells. In a second step, we discussed how to improve the exploration and exploitation capabilities of this tool. We have, for this purpose, studied aspects related to the management of the size of the population and to the adaptation of the mechanisms of reproduction to the graphical nature of the problem. After this second step, we builded our optimization tool that we tested on study cases whose complexity is similar to that encountered at industrial showing its potential of to design electromechanical devices.
|
2 |
Investigating the Use of Digital Twins to Optimize Waste Collection Routes : A holistic approach towards unlocking the potential of IoT and AI in waste management / Undersökning av användningen av digitala tvillingar för optimering av sophämtningsrutter : Ett holistiskt tillvägagångssätt för att ta del av potentialen för IoT och AI i sophanteringMedehal, Aarati January 2023 (has links)
Solid waste management is a global issue that affects everyone. The management of waste collection routes is a critical challenge in urban environments, primarily due to inefficient routing. This thesis investigates the use of real-time virtual replicas, namely Digital Twins to optimize waste collection routes. By leveraging the capabilities of digital twins, this study intends to improve the effectiveness and efficiency of waste collection operations. The ‘gap’ that the study aims to uncover is hence at the intersection of smart cities, Digital Twins, and waste collection routing. The research methodology comprises of three key components. First, an exploration of five widely used metaheuristic algorithms provides a qualitative understanding of their applicability in vehicle routing, and consecutively waste collection route optimization. Building on this foundation, a simple smart routing scenario for waste collection is presented, highlighting the limitations of a purely Internet of Things (IoT)-based approach. Next, the findings from this demonstration motivate the need for a more data-driven and intelligent solution, leading to the introduction of the Digital Twin concept. Subsequently, a twin framework is developed, which encompasses the technical anatomy and methodology required to create and utilize Digital Twins to optimize waste collection, considering factors such as real-time data integration, predictive analytics, and optimization algorithms. The outcome of this research contributes to the growing concept of smart cities and paves the way toward practical implementations in revolutionizing waste management and creating a sustainable future. / Sophantering är ett globalt problem som påverkar alla, och hantering av sophämtningsrutter är en kritisk utmaning i stadsmiljöer. Den här avhandlingen undersöker användningen av virtuella kopior i realtid, nämligen digitala tvillingar, för att optimera sophämtningsrutter. Genom att utnyttja digitala tvillingars förmågor, avser den här studien att förbättra effektiviteten av sophämtning. Forskningsmetoden består av tre nyckeldelar. Först, en undersökning av fem välanvända Metaheuristika algoritmer som ger en kvalitativ förståelse av deras applicerbarhet i fordonsdirigering och således i optimeringen av sophämtningsrutter. Baserat på detta presenteras ett enkelt smart ruttscenario för sophämtning som understryker bristerna av att bara använda Internet of Things (IoT). Sedan motiverar resultaten av demonstrationen nödvändigheten för en mer datadriven och intelligent lösning, vilket leder till introduktionen av konceptet med digitala tvillingar. Därefter utvecklas ett ramverk för digitala tvillingar som omfattar den tekniska anatomin och metod som krävs för att skapa och använda digitala tvillingar för att optimera sophämtningsrutter. Dessa tar i beaktning faktorer såsom realtidsdataintegrering, prediktiv analys och optimeringsalgoritmer. Slutsatserna av studien bidrar till det växande konceptet av smarta städer och banar väg för praktisk implementation i revolutionerande sophantering och för skapandet för en hållbar framtid.
|
Page generated in 0.0584 seconds