• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Characterization, and Application of Metal-chelating Polymers for Mass Cytometric Bioassays

Majonis, Daniel 20 March 2014 (has links)
This thesis describes the synthesis, characterization, and application of metal-chelating polymers for mass-cytometric bioassays. Mass cytometry is a cell characterization technique in which cells are injected individually into an ICP-MS detector. Signal is provided by staining cell-surface or intracellular antigens with metal-labeled antibodies (Abs). These Abs are labeled through the covalent attachment of metal-chelating polymers which carry multiple copies of a lanthanide isotope. In this work, my first goal was to develop a facile, straightforward synthesis of a new generation of metal-chelating polymers. The synthesis began with reversible addition-fragmentation chain transfer polymerization, and was followed by numerous post-polymerization pendant group transformations to introduce DTPA lanthanide chelators to every repeat unit, and a maleimide at the end of the chain. The second goal was to apply these metal-chelating polymers in bioassay experiments. The DTPA groups were loaded with lanthanide ions, and the maleimide group was used to covalently attach the polymer to an Ab. This goat anti-mouse conjugate was found to carry an average of 2.4 ± 0.3 polymer chains. Then, primary Ab conjugates were prepared and used in an 11-plex mass cytometry assay in the characterization of umbilical cord blood cells. The third goal was to expand the multiplexity of the assay. In current technology, the number of Abs that can be monitored simultaneously is limited to the 31 commercially available, stable lanthanide isotopes. Thus, I had an interest in preparing metal-chelating polymers that could carry other metals in the 100-220 amu range. I synthesized polymers with four different polyaminocarboxylate ligands, and investigated the loading of palladium and platinum ions into these polymers. Polymer-Ab conjugates prepared with palladium- and platinum-loaded polymers gave curious results, in that only dead cells were recognized. The fourth goal was to create dual-purpose Ab tags. My approach was to synthesize polymers similar to those described above, but which also carried two to six fluorescent dyes. Polymer-Ab conjugates prepared with four different dye-labeled polymers gave mixed results. Two of the four conjugates performed well in FACS and mass cytometric assays, but the other two did not. Further experiments are needed to overcome this problem.
2

Synthesis, Characterization, and Application of Metal-chelating Polymers for Mass Cytometric Bioassays

Majonis, Daniel 20 March 2014 (has links)
This thesis describes the synthesis, characterization, and application of metal-chelating polymers for mass-cytometric bioassays. Mass cytometry is a cell characterization technique in which cells are injected individually into an ICP-MS detector. Signal is provided by staining cell-surface or intracellular antigens with metal-labeled antibodies (Abs). These Abs are labeled through the covalent attachment of metal-chelating polymers which carry multiple copies of a lanthanide isotope. In this work, my first goal was to develop a facile, straightforward synthesis of a new generation of metal-chelating polymers. The synthesis began with reversible addition-fragmentation chain transfer polymerization, and was followed by numerous post-polymerization pendant group transformations to introduce DTPA lanthanide chelators to every repeat unit, and a maleimide at the end of the chain. The second goal was to apply these metal-chelating polymers in bioassay experiments. The DTPA groups were loaded with lanthanide ions, and the maleimide group was used to covalently attach the polymer to an Ab. This goat anti-mouse conjugate was found to carry an average of 2.4 ± 0.3 polymer chains. Then, primary Ab conjugates were prepared and used in an 11-plex mass cytometry assay in the characterization of umbilical cord blood cells. The third goal was to expand the multiplexity of the assay. In current technology, the number of Abs that can be monitored simultaneously is limited to the 31 commercially available, stable lanthanide isotopes. Thus, I had an interest in preparing metal-chelating polymers that could carry other metals in the 100-220 amu range. I synthesized polymers with four different polyaminocarboxylate ligands, and investigated the loading of palladium and platinum ions into these polymers. Polymer-Ab conjugates prepared with palladium- and platinum-loaded polymers gave curious results, in that only dead cells were recognized. The fourth goal was to create dual-purpose Ab tags. My approach was to synthesize polymers similar to those described above, but which also carried two to six fluorescent dyes. Polymer-Ab conjugates prepared with four different dye-labeled polymers gave mixed results. Two of the four conjugates performed well in FACS and mass cytometric assays, but the other two did not. Further experiments are needed to overcome this problem.
3

Solid-State NMR Structural Studies of Proteins Using Cyclen Based Paramagnetic Metal Chelating Probes

jayasinha arachchige, Rajith Madushanka January 2016 (has links)
No description available.
4

Exploring Neoteric Solvent Extractants: Applications in the Removal of Sorbates From Solid Surfaces and Regeneration of Automotive Catalytic Converters

Subramanian, Bhargavi 03 July 2007 (has links)
No description available.
5

Modification of Surfaces with Carboxymethylthio and Piperazinyl Chelating Ligands for Heavy Metal Trapping Applications

Adongo, John 04 February 2019 (has links)
Die zwei Chelatbildner für Schwermetallionen, Carboxymethylthio- (CMT) und Piperazinyl- (PPz), wurden erfolgreich über die direkte kathodische Elektroreduktion ihres Aryl diazoniumsalzes auf Wasserstoff–terminiertes Silizium (Si-H)- und auf Gold (Au)-Substratoberflächen aus den Derivaten: 4-(Carboxymethylthio)benzenediazoniumsalz [4-CMTBD]+BF4- und 4-(Piperazinyl)benzenediazoniumsalz [4-PPzBD]+BF4- abgeschieden. Die elektrochemische Anbindung wurde unter Verwendung von zyklischer Voltammetrie (CV) und chronoamperometrie (CA) Techniken durchgeführt. Die IRSE-Spektren bestätigten die Anwesenheit der organischen CMT- und PPz-Komplexbildnergruppen durch ihre charakteristischen Absorptionsbanden auf den elektrotransplantierten Si(111) - und Au-Substraten, was eine erfolgreiche Oberflächenfunktionalisierung anzeigt. Die Analyse, der bei der chronoamperometrischen Elektroreduktion gemessenen Ströme, der beiden Diazoniumkationen [4-CMTBD]+ und [4-PPzBD]+ sowohl auf Si (111)-H- als auch auf Au-Oberfläche, zeigt eine Korrelation mit der kinetischen Reaktionsgleichung zweiter Ordnung während der frühen Stufen der jeweiligen elektrochemischen Deposition. Die Behandlung der funktionalisierten Oberflächen, Si(4-CMTB) mit Cu- und Pb- Ionen, und Si(4-PPzB) mit Cu-Ionen unter niedrigen hydrothermalen Druckbedingungen führte zur Bildung von organometallischen Chelatkomplexen auf den Oberflächen. Die Aufnahme von Cu-Ionen sowohl auf der Si(4-CMTB)- als auch auf der Si(4-PPzB)-Oberfläche wurde ebenfalls mittels XPS untersucht. Die Schwermetallionen-chelatisierenden Nanokompositoberflächen, die in dieser Arbeit erfolgreich hergestellt und charakterisiert wurden, stellen neuartige funktionelle Materialien dar, die potentiell technische Interesse haben könnten. / The two heavy-metal-ion (HMI) chelating groups, carboxymethylthio- (CMT), and piperazinyl- (PPz), were successfully electrografted on Si(111)-H and Au substrate surfaces via the direct cathodic electroreduction of their aryl diazonium salt derivatives: the 4-(carboxymethylthio)benzenediazonium salt [4-CMTBD]+BF4-, and the 4-(piperazinyl)benzenediazonium salt [4-PPzBD]+BF4-. The IRSE spectra confirmed the successful surface functionalization by the CMT and PPz chelating groups by their characteristic absorption bands on the electrografted Si(111) and Au substrates. The analysis of the chronoamperometric electroreduction of the two diazonium cations [4-CMTBD]+ and [4-PPzBD]+, on both Si(111)-H and Au surfaces, revealed that the rate of decay in currents correlates with the second-order kinetic rate law during the early stages of the electrografting reactions. The treatment of the functionalized surfaces, Si-(4-CMTB) with the Cu and Pb ions, and Si-(4-PPzB) with Cu ions under low pressure hydrothermal conditions led to the formation of organometallic chelate complexes on the surfaces. The uptake of Cu ions on both the Si-(4-CMTB) and Si-(4-PPzB) surfaces was also elucidated by XPS measurements. The HMI chelating nanocomposite surfaces successfully fabricated and characterized in this work constitute novel functional materials that may be of potential engineering interests.

Page generated in 0.1304 seconds