• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 23
  • 20
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 225
  • 225
  • 163
  • 56
  • 48
  • 45
  • 33
  • 31
  • 22
  • 21
  • 21
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Systematic syntheses of iron-triad (Fe,Ru,Os) tetranuclear clusters by redox condensation reactions of [Ru(3);CO(11)) and [Os(3);CO(11)] trinuclear carbonylates; co-crystallization of ruthenium-osmium clusters /

Siriwardane, Upali January 1985 (has links)
No description available.
192

Systèmes nanocristallins Sm1-s(Fe,Mo)5+2s : étude des propriétés structurales et magnétiques / Structural and magnetic investigation on nanocristalline Sm1-s(Fe,Mo)5+2s compounds

Khazzan, Salwa 20 December 2010 (has links)
Ce travail se situe dans le cadre général de l'étude des nanostructures obtenues par mécanosynthèse qui font l'objet d'intenses recherches dans le domaine des aimants permanents de nouvelle génération et de l'enregistrement magnétique. L'objectif de l'étude du système Sm-Fe-Mo est de suivre l'effet de la substitut ion partielle du fer par le molybdène ainsi que l'effet de l'insertion d'un élément léger tel que le carbone sur leurs propriétés magnétiques afin d'établir une corrélation entre leur microstructure et leurs propriétés magnétiques. Nous avons montré que la mise en solution du molybdène est bien possible. La phase 2/17 ainsi obtenue possède une température de Curie (Tc) égale à 434K. Avec le taux de substitution croissant, on découvre un changement de phase vers une phase monoclinique 3/29 du type Nd3(Fe,Ti)29 de Tc égale à 459K, puis vers une structure quadratique (1/12 de Tc=551K). Ces phases d'équilibre, obtenues à haute température de recuit, dérivent toutes de la structure CaCu5. Elles correspondent à la substitution ordonnée des atomes de Sm par des haltères de Fe. A plus basse température de recuit, on découvre l'apparition de nouvelles phases, ne figurant pas dans les diagrammes d'équilibre. Nous avons déterminé les stchiométries respectives de ces phases par analyse des diagrammes de diffraction des RX par la technique de Rietveld. Ces phases hexagonales possèdent des propriétés magnétiques plus intéressantes que les phases d'équilibre. L'insertion du carbone change drastiquement les propriétés magnétiques des différentes phases / One important family among the hard magnetic rare-earth-transition-metal is derived from Sm-Fe-Mo CaCu5-type structure. The aim of the study of the system Sm-Fe-Mo is to follow the effect of partial substitution of Fe by Mo and the effect of the insertion of a light element such as carbon on their magnetic properties in order to correlate their microstructure and their magnetic properties.The ordered substitution of Sm atom by a dumbbell pair Fe-Fe leads to the equilibrium phases 2/17, 3/29 and 1/12 structure. With Mo content increase, a phase transformation is observed. The Curie temperatures of these phases are respectively 434, 459 and 551K. New phases are discovered to appear at lower annealing temperatures. Owing to Rietveld refinement, these phases crystallize in the P6/mmm structure. Carbon insertion improves drastically magnetic properties. The carbides of the new out of equilibrium phases are particularly promising for permanent magnet applications
193

Development of Nucleophile Assisting Leaving Groups (NALGs) and new stereoselective reactions using titanium(IV) reagents

Unknown Date (has links)
We report here the development of very efficient sulfonate based leaving groups, termed Nucleophile Assisting Leaving Groups (NALGs), to accelerate the rate of nucleophilic substitution reactions involving poor nucleophiles and/or substrates traditionally considered too hindered to undergo nucleophilic attack. Indeed NALGs have shown exceptional ability in improving rate of nucleophilic substitution reactions. New very mild stereoretentive halogenations and azidation reactions have also been developed for secondary cyclic alcohols using NALGs involving titanium(IV) reagents. This reaction is particularly significant since the carbon-halogen bond is found widely in natural products and is used extensively as a synthesis intermediate. Azide is also a synthetically important functional group from which a variety of biologically important functional groups are conveniently obtained. Though stereoretentive chlorination and bromination reactions are known, we have developed, for the first time, a stereoretentive azidation reaction using titanium(IV) azide, a reagent not previously used in organic synthesis. During our development of stereoretentive reactions, we eventually developed very efficient, mild, two-step one-pot stereoretentive halogenations (chlorination and bromination) using titanium(IV) halides as catalysts or stoichiometric reagents. These reactions were found to be particularly efficient for cyclic alcohols. An efficient one pot stereoretentive amidation reaction for secondary cyclic alcohols is also reported. The important features of this reaction are that, for the first time, chlorosulfite (prepared in situ from alcohol using thionylchloride) has been used as a leaving group and titanium(IV) fluoride as an activator. / Utilization of those two reagents is unique as thionylchloride has never been used for nucleophilic substitution reactions except in chlorination procedures. In addition, this work has found new and creative applications for titanium (IV) fluoride, a reactant rarely used in organic synthesis. Further exploiting the unique reactivity of titanium(IV), reactions of alkenes with various nucleophiles have been developed with this reagent in both catalytic and stoichiometric quantities. It was observed that a-substituted aromatic conjugated alkenes dimerize to generate important indan class of compounds which are very important in the polymer industry. In addition, non conjugated unactivated alkenes react with various nucleophiles to yield the adduct. / by Deboprosad Mondal. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
194

Development and applications of nucleophile assisting leaving groups (NALGs) with Titanium (IV) and Grignard reagents

Unknown Date (has links)
We report here the development of very efficient aryl- and quinolinyl- sulfonate based leaving groups, termed Nucleophile Assisting Leaving Groups (NALGs), which substantially accelerate the rate of nucleophilic substitution reactions with metal halides. Detailed synthesis and kinetics study are described herein. Our synthesized NALGs have shown great reactivity towards poor nucleophiles and/or substrates traditionally considered too hindered to undergo nucleophilic attack. The abundant existence of halide, azide and amine in natural products demands new synthetic pathway. To fulfill this requirement, new mild stereoretentive halogenations (chlorination, bromination and iodination) reactions have also been developed for secondary cyclic alcohols using NALGs involving titanium (IV) reagents. The novel methodology can be extended to Azidation reactions as well with titanium (IV) azide, in which Ti (N3)4 is the first time being engaged in organic synthesis. Beased on the NALGs theory we discover the chlorosulfite can be a simplest NALG and applied as the intermediate in mild one-pot stereoretentive halogenations (chlorination and bromination) using titanium (IV) halides as catalysts or stoichiometric reagents. These reactions were found to be particularly efficient for cyclic alcohols. Finally, an efficient mild bromination and iodination reaction for primary and secondary alcohols with Grignard reagents is also reported. This reaction exhibits the generality with substrates with various leaving groups. The important features of this reaction are that, for the first time, bromide formation using Grignard reagents without the Cu (I) catalysts. / by Songye Li. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
195

Magnetic properties of transition metal compounds and superlattices

Broddefalk, Arvid January 2000 (has links)
<p>Magnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical <i>ab initio</i> calculations. </p><p>The magnetic compounds (Fe<sub>1-x</sub>M<sub>x</sub>)<sub>3</sub>P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to <i>x</i>=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to<i> x</i>=0.25 while Fe can be substituted into Mn<sub>3</sub>P to 1-<i>x</i>=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found. </p><p>The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary. </p><p>The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111]. </p>
196

Magnetic properties of transition metal compounds and superlattices

Broddefalk, Arvid January 2000 (has links)
Magnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical ab initio calculations. The magnetic compounds (Fe1-xMx)3P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to x=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to x=0.25 while Fe can be substituted into Mn3P to 1-x=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found. The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary. The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111].
197

Synthesis, Kinetic and Photocatalytic Studies of Porphyrin-Ruthenium-Oxo Complexes

Huang, Yan 01 August 2010 (has links)
Macrocyclic ligand-complexed transition metal-oxo intermediates are the active oxidizing species in a variety of important biological and catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in Nature, namely the cytochrome P450 enzymes. Ruthenium porphyrin complexes have been the center of the research and have successfully been utilized, as catalysts, in major oxidation reactions such as the hydroxylation of alkanes. This study focuses on kinetic and photocatalytic studies of oxidation reactions with wellcharacterized high-valent ruthenium-oxo porphyrin complexes. The trans-dioxoruthenium(VI) porphyrins have been among the best characterized metal-oxo intermediates and their involvement as the active oxidant in the hydrocarbon oxidation have been extensively studied. Following the literature known methods, a series of trans-dioxoruthenium(VI) porphyrin complexes (3a-b) were synthesized and spectroscopically characterized by UV-vis, IR and lH-NMR. In addition to the well-known chemical methods, we developed a novel photochemical approach for generation of trans-dioxoruthenium(VI) porphyrins with visible light. The fast kinetic study of two-electron oxidations of para-substituted phenyl methyl sulfides by these dioxoruthenium(VI) species was conducted by using stopped-flow spectroscopy. Results showed that the decay of trans--dioxoruthenium(VI) porphyrins in the presence of reactive sulfides follows a biexponential process. The reactivity order in the series of dioxoruthenium complexes follows TPFPP> TPP> TMP, consistent with expectations based on the electrophilic nature of high-valent metal-oxo species. Moreover, the sulfoxidation reactions are 3 to 4 orders of magnitude faster than the well-known epoxidation reactions. In addition, several ruthenium porphyrins were used as the catalysts in the competitive oxidation reactions to identify the kinetically competent oxidants during catalytic turnover conditions. The photocatalytic studies of aerobic oxidation reactions of hydrocarbons catalyzed by a bis-porphyrin-ruthenium(lV) fl-OXO dimer using atmospheric oxygen as oxygen source in the absence of co-reductants were investigated as well. The ruthenium(lV) fl-OXO bisporphyrin (6a) was found to catalyze aerobic oxidation of a variety of organic substrates efficiently. By comparison, 6a was found to be more efficient photocatalyst than the well-known 3a under identical conditions. A KIE at 298K was found to be larger than those observed in autoxidation processes, suggesting a nonradical mechanism that involved the intermediacy of ruthenium(V)-oxo species as postulated.
198

Synthesis and structure-property relationships in selected metal fluorides

Reisinger, Sandra A. January 2012 (has links)
There has been an increase in the interest in fluoride materials over the last decade. This interest has focused on multiferroic materials and kagome lattices, to name but a few areas. This thesis focuses on the synthesis and crystallographic characterisation of selected transition metal fluorides and oxyfluorides. Work is presented on the tetragonal tungsten bronze solid solutions of KₓFeF₃, where x = 0.58 and x ≈ 0.5, and the copper analogue, K₃Cu₃Fe₂F₁₅; the kagome structure of Cs₂ZrCu₃F₁₂; and hydrothermal reactions using vanadium, manganese, or molybdenum as the transition metals in the formation of new fluorides and oxyfluorides. The tetragonal tungsten bronze compounds KₓFeF₃ (x = 0.58 and x ≈ 0.5) are both tetragonal at 500 K. In the variant with the lower K-content, there is a clear phase separation into two tetragonal phases even at this temperature. The K₀.₅₈FeF₃ sample separates into two distinct phases below 340 K to possess one tetragonal and one orthorhombic phase. Then at roughly 300 K, both samples undergo a phase transition where the tetragonal phase in the P4/mbm space group in K₀.₅₈FeF₃ changes to an orthorhombic phase with a larger unit cell; and the tetragonal phase in P4₂bc for the K₀.₅FeF₃ sample changes to the same orthorhombic model, whilst the P4/mbm model remains unchanged. The evolution of the lattice parameters and phase fractions is studied in detail using synchrotron powder X-ray diffraction (sPXRD). The kagome structure investigated, Cs₂ZrCu₃F₁₂, possesses the “ideal” kagome lattice at room temperature, but previous work has suggested that there is a phase transition at 225 K. The two structures are determined by single crystal X-ray diffraction at 300 K and 125 K. Variable temperature sPXRD studies are performed between these two temperature ranges to determine the phase evolution as a function of temperature. The structure changes from a rhombohedral to a monoclinic phase at low temperature. This is the result of the buckling of the kagome layers at the phase transition. The Zr⁴⁺ ion changes from 6 to 7 coordinate and this is seen as the main driving force for the distortion of the kagome layer from its “ideal” planar arrangement. ii The phase transition is first-order as seen from the electrical impedance measurements. The hydrothermal reactions presented reveal seven new materials and their crystal structures. Sr₂V₂F₁₀·H₂O is new and found to be isostructural to Sr₂Fe₂F₁₀·H₂O. BaVO₂F₃ is a cubic material that is potentially piezoelectric. Two hybrid organic inorganic manganese compounds are reported. The ladder structure (C₃N₂H₅)[Mn₂F₆(H₂O)₂] crystallises in a polar space group and shows promise as a candidate for multiferroic studies. The second hybrid material, (C₇NH₁₆)₂[MnF₅(H₂O)]·2H₂O, crystallises in a centrosymmetric space group. The Mo hybrid materials are all centrosymmetric and possess isolated molybdenum-centred monomeric or dimeric octahedral units.
199

Noble and transition metal aromatic frameworks: synthesis, properties, and stability

Carson, Cantwell G. 14 May 2009 (has links)
In the first section, the electrical conductivity of rhodium phenylene-diisocyanide polymer is reported to be 3.4E-11 S/cm. However, the conductivity also exhibits an inverse exponential decay in air with t = 8 days. This change is attributed to the oxidation of the isocyanide functional group to an isocyanate, leading to degradation in the long-range metal-metal bonding, the dominant conductivity mechanism. Using a more stable carboxylate ligand, the Cu terephthalate (TPA) system is studied and compared against the Mg, Co, Ni, and Zn terephthalates. A synthesis in N,N-dimethylformamide (DMF) is developed and large quantities of the Cu(TPA)DMF can be synthesized in air. The crystal structure of the Cu(TPA) DMF is shown to be in the C2/m spacegroup. Upon desolvation, the Cu(TPA) is shown to have a large surface area of 625 m2/g. The magnetic susceptibility of the Cu(TPA) indicates anti-ferromagnetic coupling between adjacent Cu centers in the same dimer. The thermal stability of the Zn, Ni, Co, and Mg terephthalates is shown to increase with decreasing symmetric carboxylate stretch in the IR. The magnetic susceptibilities of the Co and Ni terephthalates have paramagnetic behavior, with a Weiss temperature of T = -12.9 K and T = 8.8 for Co(TPA) DMF and Ni(TPA)DMF respectively. A heterometallic Zn-Cu terephthalate is synthesized with Cu concentrations ranging from 0 to 100%. Upon the addition of Cu, Zn-rich frameworks increase in surface area, change in thermal stability, and increase their solvent retention from 16% to 25%. Zn is shown to couple with Cu in the same dimer at a high rate, changing the behavior of the dimer from anti-ferromagnetic to paramagnetic. The Weiss temperature suggests weak ferromagnetic interaction.
200

Hydrothermal syntheses, structures, and properties of new iodate and selenite compounds of transition metals, lanthanides, and actinides

Ling, Jie, Albrecht-Schmitt, Thomas E., January 2007 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2007. / Abstract. Vita. Includes bibliographical references.

Page generated in 0.329 seconds