• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 36
  • 25
  • 16
  • 11
  • 9
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 527
  • 265
  • 150
  • 116
  • 108
  • 82
  • 78
  • 76
  • 75
  • 71
  • 70
  • 65
  • 62
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Functionalized Metal-Organic Frameworks for Catalytic Applications

Xie, Feng 10 1900 (has links)
The development and design of efficient catalysts are essential for catalytic energy technologies, accompanied with the fundamental understanding of structure-property relationships of these catalysts. Metal-organic frameworks (MOFs), as the new class of promising catalysts, have been intensively investigated primarily in their fundamental electrochemistry and the broad spectrum of catalytic applications due to their structural flexibility, tailorable crystalline, and multi-functionality. In this work, we combine experiments and mechanism investigation to gain a fundamental understanding of how the surface property and the structure of MOFs affect their catalytic performance. With the aim of material design for MOFs catalysts, we developed two novel superhydrophilic and aerophobic metal-organic frameworks (AlFFIVE-1-Ni MOFs and FeFFIVE-1-Ni MOFs) used as electrocatalysts for the first time during oxygen evolution reactions (OER). Under the facilitation of hydrophilicity and aerophobicity, developed FeFFIVE-1-Ni MOFs electrocatalysts deliver optimal OER performance, better than that of the state-of-art RuO2 and referred NiFe-BDC MOFs electrocatalysts. Most importantly, the practical strategy demonstrated that the hydrophilic and aerophobic structure of MOFs does indeed deliver the optimal electrocatalytic performance. With the aim of investigating the structural transformation process of metal-organic framework, we used a series of advanced characterization techniques to monitor the structure evolution and defects presence for post-heating treated UiO-66 MOFs. The structural and electronic features of UiO-66 MOFs were intensely studied in their hydroxylated, dehydroxylated, defected, and pyrolytic forms. Meanwhile, one concept about the framework situation, quasi-MOF (like a transition state, defined high activation along the structure evolution corresponding to the presence of many defects), was presented and demonstrated. Compared with pristine UiO-66 MOF, the Quasi-MOF with the presence of active defects showed enhanced catalytic activity on the Meerwein-Ponndorf-Verley reduction reaction, which offers an opportunity to understand the structure-property relationship along with the structure evolution process of UiO-66 MOFs.
242

Atomically Precise Silver Nanoclusters: Controlled Synthesis and Assembly into Structurally Diverse Frameworks with Tailored Optical Properties

Alhilaly, Mohammad Jaber 24 October 2019 (has links)
Ligand-protected metal nanoclusters (NCs), which are ultra-small nanoparticles marked by their atomic precision, are distinctly importance for contemporary nanomaterials. NCs have attracted significant research attention for utilizing their novel optical and physicochemical properties in various applications, including fluorescence sensing, catalysis, and biomedical applications. This dissertation deals with ligand-protected atomically precise silver NCs and is divided into two main parts. The first part is focused on the exploration and design of well-defined silver NCs through surface co-ligand engineering. The second part is related to the development of silver NC-based frameworks (NCFs). In the first part, we designed a synthetic strategy based on engineering the structure of the phosphine co-ligands with thiols to generate the large box-shaped [Ag67(SPhMe2)32(PPh3)8]3+ (referred to as Ag67) NC. The strategy demonstrates that the combined use of judiciously chosen thiol and phosphine co-ligands can result in stable highly anisotropic box-like shapes. The optical absorption spectrum of the Ag67 NC displays highly structured multiple sharp peaks. The crystal structure shows a Ag23 core formed of a centered cuboctahedron (an unprecedented core geometry in silver clusters), which is encased by a layer with a composition of Ag44S32P8 arranged in the shape of a box. The electronic structure of this box-shaped cluster resembles a jellium box model with 32 free electrons. In the second part, a novel approach is developed for the assembly and linkage of atomically precise Ag NCs into one-dimensional (1D) and two-dimensional (2D) NC-based frameworks (NCFs) with atomic-level control over cluster size and dimensionality. With this approach three novel, but related, crystal structures (one silver NC and two NCFs) were synthesized. These structures have the same protecting ligands, and also the same organic linker. The three structures exhibit a similar square gyrobicupola geometry of the building NC unit with only a single Ag atom difference. The critical role of using a chloride template in controlling the NC’s nuclearity was demonstrated, as well as the effect of a single Ag atom difference in the NC’s size on the NCF’s dimensionality, optical properties, and thermal stability.
243

Stimuli-responsive properties of a downsized crystalline coordination framework / ダウンサイズした結晶性配位骨格が示す刺激応答特性

Sakaida, Shun 23 March 2021 (has links)
京都大学 / 新制・論文博士 / 博士(理学) / 乙第13396号 / 論理博第1575号 / 新制||理||1678(附属図書館) / (主査)教授 北川 宏, 教授 吉村 一良, 教授 有賀 哲也 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DGAM
244

Controlling Adsorption Properties of Metal-Organic Framework Particles through Synthesis Protocols / 精密合成に立脚した多孔性配位錯体微粒子の吸着特性制御

Fujiwara, Atsushi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23233号 / 工博第4877号 / 新制||工||1761(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 宮原 稔, 教授 佐野 紀彰, 教授 松坂 修二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
245

Hydrothermal Synthesis of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Crystals with Controllable Size and Morphology

Lestari, Gabriella 05 1900 (has links)
Zeolitic imidazolate frameworks (ZIFs) is a new class of metal-organic frameworks (MOFs) with zeolite-like properties such as permanent porosity, uniform pore size, and exceptional thermal and chemical stability. Until recently, ZIF materials have been mostly synthesized by solvothermal method. In this thesis, further analysis to tune the size and morphology of ZIF-8 is done upon our group’s recent success in preparing ZIF-8 crystals in pure aqueous solutions. Compositional parameters (molar ratio of 2-methylimidazole/Zn2+, type of zinc salt reagents, reagent concentrations, addition of surfactants) as well as process parameters (temperature and time) were systematically investigated. Upon characterizations of as-synthesized samples by X-ray powder diffraction, thermal gravimetric analysis, N2 adsorption, and field-emission scanning electron microscope, the results show that the particle size and morphology of ZIF-8 crystals are extremely sensitive to the compotional parameters of reagent concentration and addition of surfactants. The particle size and morphology of hydrothermally synthesized ZIF-8 crystals can be finely tuned; with the size ranging from 90 nm to 4 μm and the shape from truncated cubic to rhombic dodecahedron.
246

Immobilization of Copper Nanoparticles onto Various Supports Applications in Catalysis

Nguyen Sorenson, Anh Hoang Tu 26 March 2020 (has links)
Copper-based materials are one of the most promising catalysts for performing transformations of important organic compounds in both academic and industrial operations. However, it is challenging to consistently synthesize highly active and stable copper species as heterogeneous catalysts due to their relatively high surface energy. As a result, agglomeration usually occurs, which limits the catalytic activities of the copper species. The work presented in this dissertation shows different synthetic strategies for obtaining active and stable copper-based materials by modifying chemical/physical properties of copper nanoparticles (NPs). Emphasis is placed on discussing specific catalytic systems, including carbon-supported catalysts (monometallic and bimetallic copper-based heterogeneous catalysts) and titania-supported catalysts, and their advantages in terms of catalytic performance. In recent years, there has been increasing interest in using metal-organic frameworks (MOFs) as a sacrificial template to obtain carbon-supported NPs via a thermolysis process. The advantages of using MOFs to prepare carbon supported nanomaterials are a fine distribution of active particles on carbon matrix without post-synthesis treatments and corresponding increased catalytic activity and stability in many reaction conditions. To better understand the potential of this synthetic approach, MOF pyrolyzed products have been characterized. Then, they were applied as heterogeneous catalysts for several chemical reactions. In particular, the high energy copper-based MOF, CuNbO-1, was decomposed to obtain an amorphous copper species supported on carbon (a-Cu@C). This catalyst was found to be highly active for reduction, oxidation, and N-arylation reactions without further tuning or optimization. Higher catalyst turnover numbers for each of these transformations were obtained when comparing a-Cu@C activity to that of similar Cu-based materials. To improve catalyst performance, a secondary metal can be introduced to create synergistic effects with the parent copper species. In order to gain insights into the role of the second metal, a well-known Cu-MOF, HKUST-1, was doped with nickel, cobalt, and silver solutions, followed by a decomposition process with 2,4,6-trinitrotoluene (TNT) as additive. This additive was used to enhance the rapid thermolysis of the bimetallic MOFs. In these bimetallic systems, the addition of a second metal was found to help in dispersing both metals over the carbon composite support and in influencing the particle size and oxidation state of the metals. Catalytic performance showed that even <1% of a secondary metal increased the rate for nitrophenol reduction. Optimal catalytic performance was achieved using a Ni-CuO@C bimetallic catalyst. Another synthetic strategy for Cu-catalyst preparation involves using the deposition-precipitation method, in which a copper catalyst anchored on a titania support was synthesized at low weight % in order to obtain a single atom catalyst (1-Cu/TiO2). The higher copper loading catalyst, 5-Cu/TiO2, was synthesized as a benchmark catalyst for comparison. The copper structure in the synthesized catalysts was investigated by powder X-ray diffraction (PXRD), Raman, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX), X-ray photoelectron spectroscopy (XPS), N2 physisorption and inductively coupled plasma mass spectrometry (ICP-MS) in order to characterize physical and chemical properties. STEM-EDX observations showed single atom copper species less than 0.75 nm in size, as well as nanoparticles with an average diameter of ~1.31 nm. This catalyst was highly active in the reduction of nitro-aromatic compounds with NaBH4 at room temperature. The small to atomic level sizes of the Cu species and multiple oxidation states of Ti species were found to play a crucial role in the catalytic activity.
247

Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur Batteries

Wan, Yi 19 November 2017 (has links)
The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability of MOFs or CPs, which has substantial potential for future commercial utilizations.
248

2D molekulární systémy na površích / 2D molecular systems at surfaces

Kormoš, Lukáš January 2021 (has links)
Molekulárne systémy predstavujú jeden zo smerov súčasného výskumu nových nanoelektronických zariadení. Organické molekuly nachádzajú uplatnenie v rôznych aplikáciách, ako sú napríklad solárne články, displeje alebo kvantové počítače. Rast vysokokvalitných molekulárnych vrstiev s požadovanými vlastnosťami často vyžaduje využitie samousporiadavaných štruktúr, hlboké pochopenie rozhrania kovu a organických molekúl a tiež dynamiky rastu molekulárnych vrstiev. Predkladaná práca sa zaoberá predovšetkým samousporadanými štruktúrami bifenyl-dikarboxylovej kyseliny (BDA) na Cu (1 0 0) a Ag (1 0 0), ktoré boli skúmané v UHV s využitím STM, XPS a LEEM. V prípade BDA-Ag je podrobne opísaných niekoľko chemicky a štrukturálne odlišných molekulárnych fáz. Ďalej boli BDA a TCNQ molekuly skúmané na grafene pripravenom na Ir (1 1 1). Okrem toho sa organo-kovové systémy syntetizovali depozíciou atómov Ni a Fe s molekulami TCNQ a BDA. Záverečná časť tejto práce popisuje povrchovú syntézu grafénových nanoribonov (7-AGNR) na špecicky štrukturovanom substráte Au (16 14 15) z prekurzorových molekúl DBBA. Rekonštrukcia povrchu po raste bola analyzovaná pomocou STM a elektronické vlastnosti 7-AGNRs pomocou ARPES.
249

Molecular Engineering of Metal-Organic Assemblies: Advances Toward Next Generation Porous and Magnetic Materials

Brunet, Gabriel 16 April 2020 (has links)
The controlled assembly of molecular building blocks is an emerging strategy that allows for the preparation of materials with tailor-made properties. This involves the precise combination of molecular subunits that interact with one another via specifically designed reactive sites. Such a strategy has produced materials exhibiting remarkable properties, including those based on metal-organic frameworks and single-molecule magnets. The present Thesis aims to highlight how such metal-organic assemblies can be engineered at the molecular level to promote certain desired functionalities. Specifically, Chapter 2 will focus on the confinement effects of a crystalline sponge on a ferrocene-based guest molecule that is nanostructured within the porous cavities of a host material. In doing so, we evaluate how one can exert some level of control over the binding sites of the guest molecule, through the addition of electron-withdrawing groups, as well as tuning the physical properties of the guest itself through molecular encapsulation. Notably, we demonstrate a distinct change in the dynamic rotational motion of the ferrocene molecules once confined within the crystalline sponge. In Chapter 3, we investigate the generation of slow relaxation of the magnetization from a Co(II)-based metal-organic framework. We compare this to a closely related 2D Co(II) sheet network, and how slight changes in the crystal field, probed through computational methods, can impact the magnetic behaviour. This type of study may be particularly beneficial in the optimization of single-ion magnets, by sequestering metal centres in select chemical environments, and minimizing molecular vibrations that may offer alternative magnetic relaxation pathways. We extend these principles in Chapter 4, through the use of a nitrogen-rich ligand that acts as a scaffold for Ln(III) ions, thereby yielding 0D and 1D architectures. The coordination chemistry of Ln(III) ions with N-donor ligands remains scarce, especially when evaluated from a magnetic perspective, and therefore, we sought to determine the magnetic behaviour of such compounds. The monomeric unit displays clear single-molecule magnet behaviour with an energetic barrier for the reversal of the magnetization, while the 1D chain displays weaker magnetic characteristics. Nevertheless, such compounds incorporating nitrogen-rich ligands offer much promise in the design of environmentally-friendly energetic materials. In Chapter 5, we take a look at different two different systems that involve the formation of radical species. On one hand, we can promote enhanced magnetic communication between Ln(III) ions, which is typically quite challenging to achieve given the buried nature of the 4f orbitals, and on the other hand, we rely on a redox-active ligand to design stimuli-responsive metal-organic assemblies. The latter case provides access to “smart” molecular materials that can respond to changes in their environment. Here, a multi-stimuli responsive nanobarrel was studied, which displayed sensitivity to ultraviolet radiation, heat and chemical reduction. Lastly, Chapter 6 provides a new method for the systematic generation of cationic frameworks, termed Asymmetric Ligand Exchange (ALE). This strategy focuses on the replacement of linear dicarboxylates with asymmetric linkers that features one less negative charge, in order to tune the ionicity of porous frameworks. This allows for the retention of the structural topology and chemical reactivity of the original framework, representing distinct advantages over other similar strategies. Methods to retain permanent porosity in such cationic frameworks are also proposed. Altogether, these studies highlight how the directed assembly of ordered networks can generate varied properties of high scientific interest.
250

Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

Barankova, Eva 06 1900 (has links)
Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment (such as temperature lower than room temperature and synthesis times shorter than 1 hour) on ZIF-8 membrane properties was evaluated. We could prepare one of the thinnest (around 200 nm) yet selective ZIF-8 films reported.

Page generated in 0.0705 seconds