• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Metal-assisted Si Etching for Fabrication of Nanoimprint Lithography Stamps

Anokhina, Ksenia January 2010 (has links)
This diploma thesis deals with the investigation of the metal-assisted catalytic etching (MaCE) of Si. One of the main goals is to study fabrication of stamps for nanoimprint lithography using MaCE. Formation of nanoporous silicon (PSi), Si nanowires (SiNWs) and three-dimensional nanostructures in Si by MaCE is demonstrated. For this purpose optical lithography, electron beam lithography (EBL), shadow mask evaporation and aerosol nanoparticles deposition techniques have been utilized. The etching rate and surface morphology of Si (with Au lift-off films as a catalyst) as functions of time and concentrations of chemicals are measured in the current diploma work using optical microscope and scanning electron microscopy (SEM). In the current thesis it is shown that Si structures with sub-150 nm lateral sizes, high aspect ratio (up to 1:21), well-defined shapes, and various complexity can easily be fabricated by means of MaCE process.
2

Development of metal-assisted chemical etching as a 3D nanofabrication platform

Hildreth, Owen James 07 May 2012 (has links)
The considerable interest in nanomaterials and nanotechnology over the last decade is attributed to Industry's desire for lower cost, more sophisticated devices and the opportunity that nanotechnology presents for scientists to explore the fundamental properties of nature at near atomic levels. In pursuit of these goals, researchers around the world have worked to both perfect existing technologies and also develop new nano-fabrication methods; however, no technique exists that is capable of producing complex, 2D and 3D nano-sized features of arbitrary shape, with smooth walls, and at low cost. This in part is due to two important limitations of current nanofabrication methods. First, 3D geometry is difficult if not impossible to fabricate, often requiring multiple lithography steps that are both expensive and do not scale well to industrial level fabrication requirements. Second, as feature sizes shrink into the nano-domain, it becomes increasingly difficult to accurately maintain those features over large depths and heights. The ability to produce these structures affordably and with high precision is critically important to a number of existing and emerging technologies such as metamaterials, nano-fluidics, nano-imprint lithography, and more. Summary To overcome these limitations, this study developed a novel and efficient method to etch complex 2D and 3D geometry in silicon with controllable sub-micron to nano-sized features with aspect ratios in excess of 500:1. This study utilized Metal-assisted Chemical Etching (MaCE) of silicon in conjunction with shape-controlled catalysts to fabricate structures such as 3D cycloids, spirals, sloping channels, and out-of-plane rotational structures. This study focused on taking MaCE from a method to fabricate small pores and silicon nanowires using metal catalyst nanoparticles and discontinuous thin films, to a powerful etching technology that utilizes shaped catalysts to fabricate complex, 3D geometry using a single lithography/etch cycle. The effect of catalyst geometry, etchant composition, and external pinning structures was examined to establish how etching path can be controlled through catalyst shape. The ability to control the rotation angle for out-of-plane rotational structures was established to show a linear dependence on catalyst arm length and an inverse relationship with arm width. A plastic deformation model of these structures established a minimum pressure gradient across the catalyst of 0.4 - 0.6 MPa. To establish the cause of catalyst motion in MaCE, the pressure gradient data was combined with force-displacement curves and results from specialized EBL patterns to show that DVLO encompassed forces are the most likely cause of catalyst motion. Lastly, MaCE fabricated templates were combined with electroless deposition of Pd to demonstrate the bottom-up filling of MaCE with sub-20 nm feature resolution. These structures were also used to establish the relationship between rotation angle of spiraling star-shaped catalysts and their center core diameter. Summary In summary, a new method to fabricate 3D nanostructures by top-down etching and bottom-up filling was established along with control over etching path, rotation angle, and etch depth. Out-of-plane rotational catalysts were designed and a new model for catalyst motion proposed. This research is expected to further the advancement of MaCE as platform for 3D nanofabrication with potential applications in thru-silicon-vias, photonics, nano-imprint lithography, and more.
3

Fabrication and Characterization of Photodiodes for Silicon Nanowire Applications and Backside Illumination

Xu, Ying January 2015 (has links)
No description available.
4

Silicon Nanowires for Photovoltaics : from the Material to the Device / Nanofils de silicium pour le solaire : du matériau à la cellule photovoltaïque

Togonal, Alienor 20 April 2016 (has links)
Les cellules solaires à base de nanofils de silicium offrent une alternative intéressante pour la réalisation de panneaux photovoltaïques à haut rendement et à faible coût. Elles bénéficient notamment des excellentes propriétés optiques des nanofils qui forment une surface à très faible réflectivité tout en piégeant efficacement la lumière. Dans cette thèse, nous utilisons et améliorons une méthode de gravure chimique peu coûteuse et industrialisable pour la fabrication de forêts de nanofils de silicium. En adaptant la mouillabilité du substrat et des nanofils, nous avons remédié au problème d'agglomération inhérent à cette méthode lorsqu’on veut obtenir des forêts denses et désordonnées de nanofils. En combinant cette méthode de gravure chimique à la lithographie assistée par nanosphères, nous avons pu fabriquer des réseaux ordonnés de nanofils avec un contrôle précis des propriétés géométriques (diametre des nanofils et distance entre eux). Les propriétés optiques de ces réseaux ont été étudiées théoriquement et expérimentalement afin d'identifier les configurations optimales. Nous avons ensuite fabriqué des cellules solaires à partir de ces différents types de nanofils et deux types de structures. Le premier type, des cellules solaires HIT (Hétérojonction avec couche mince Intrinsèque) à base de nanofils de silicium, a été fabriqué par RF-PECVD. L'optimisation des conditions de dépôt plasma nous a permis d'obtenir des cellules solaires hautement performantes: rendements de 12,9% et facteurs de forme au-delà de 80%. Le second type, des cellules solaires hybrides, est basé sur la combinaison d'une couche organique et des nanofils de silicium. La caractérisation des cellules fabriquées montre des rendements prometteurs. Enfin, nous présentons des résultats préliminaires pour transférer ces concepts à une technologie couches minces. / Silicon Nanowire (SiNW) based solar cells offer an interesting choice towards low-cost and highly efficient solar cells. Indeed solar cells based on SiNWs benefit from their outstanding optical properties such as extreme light trapping and very low reflectance. In this research project, we have fabricated disordered SiNWs using a low-cost top-down approach named the Metal-Assisted-Chemical-Etching process (MACE). The MACE process was first optimized to reduce the strong agglomeration observed at the top-end of the SiNWs by tuning the wettability properties of both the initial substrate and the SiNWs surface. By combining the MACE process with the nanosphere lithography, we have also produced ordered SiNW arrays with an accurate control over the pitch, diameter and length. The optical properties of these SiNW arrays were then investigated both theoretically and experimentally in order to identify the geometrical configuration giving the best optical performance. Disordered and ordered SiNW arrays have been integrated into two types of solar cells: heterojunction with intrinsic thin layer (HIT) and hybrid devices. SiNW based HIT devices were fabricated by RF-PECVD and the optimization of the process conditions has allowed us to reach efficiency as high as 12.9% with excellent fill factor above 80%. Hybrid solar cells based on the combination of SiNWs with an organic layer have also been studied and characterized. The possible transfer of this concept to the thin film technology is finally explored.

Page generated in 0.1249 seconds