• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterization of copper-peptide systems for oxidation catalysis / Synthèse et caractérisation de systèmes cuivre-peptide pour la catalyse d’oxydation

Hautier, Alexandre 17 December 2018 (has links)
La catalyse permet de réaliser des transformations efficaces à un coût énergétique plus faible qu'avec des réactions non catalysées. Le développement d’un catalyseur peut souvent être inspiré par la Nature qui parvient à réaliser des transformations chimiques difficiles avec de hauts rendements et une grande sélectivité et ce en milieu aqueux dans des conditions douces. Par exemple, les protéines dépendantes du cuivre peuvent oxyder une large gamme de substrats. Inspirés par les systèmes biologiques, les metallopeptides ont récemment émergés en tant que plate-forme fiable pour développer de nouveaux catalyseurs grâce à leur facilité d’accès, de maniement et d’affinage de leurs propriétés. Dans cette thèse, nous décrivons la synthèse d’une famille de décapeptides bio-inspirés, qui contiennent des résidus His et Asp permettant de coordiner des ions métalliques. Les données indiquent que tous les peptides se lient au cuivre et qu’ils forment, à un pH proche de la neutralité, une espèce cuivre (II) majoritaire, similaire entre tous les peptides. Dans ces complexes, les peptides lient le cuivre (II) par les chaines latérales des résidus His et Asp. Pour finir, la capacité de ces systèmes ainsi que des complexes cuivre (II)-amyloid-β à catalyser des transformations oxydantes en solution aqueuse en utilisant H2O2 comme oxydants a été évaluée. Cette étude révèle que i) la structure des peptides à un impact sur les rendements catalytiques et sur l’obtention d’excès énantiomérique, et que ii) les complexes cuivre (II)-amyloid-β sont moins performants que nos systèmes cuivre (II)-peptide / Catalysis gives access to efficient transformations at a lower cost in energy and generally offers possibilities to reduce or eliminate the need for and the generation of hazardous compounds . The development of a catalyst is often inspired by Nature that performs challenging chemical transformations with high rates and high selectivity under mild conditions and aqueous media. For example, copper dependent proteins can react to oxidize a broad range of substrates. Inspired by biological systems, metallopeptides have recently emerged as reliable platforms to evolve new catalysts because they are chemically accessible, easy to handle and fine-tune.In this work we synthetized a family of bioinspired decapeptides containing His and Asp residues as metal ion coordinating amino acids. Their copper coordination properties were studied using pH potentiometry, and different spectroscopic techniques (UV-Vis, CD, EPR, NMR). The data indicates that all the peptides bind copper and form similar major copper(II) species at a pH close to neutrality where copper (II) is coordinated by the side-chains of His and Asp residues. Finally, the capabilities of these metallopeptides to perform a variety of oxidative transformations in aqueous solution at room temperature, using H2O2 as the oxidant were evaluated in parallel with that of amyloid-β peptides copper (II) complexes. This study revealed that i) the scaffold of the designed peptides had an impact on the catalytic efficiencies and enantiomeric excess and ii) the amyloid-β peptides copper (II) complexes are less active than our designed copper(II) peptide systems
2

Reactivity of Metal (Co, Ni, Cu) Bound Peptides with Organometallic Fragments and Small Molecules

January 2012 (has links)
abstract: Understanding the mechanisms of metalloproteins at the level necessary to engineer new functionalities is complicated by the need to parse the complex overlapping functions played by each amino acid without negatively impacting the host organism. Artificial or designed metallopeptides offer a convenient and simpler platform to explore metal-ligand interactions in an aqueous, biologically relevant coordination context. In this dissertation, the peptide SODA (ACDLPCG), a synthetic derivative of the nickel-binding pocket of nickel superoxide dismutase, is used as a scaffold to construct a variety of novel metallopeptides and explore their reactivity. In Chapter 2, I show that SODA binds Co(II) and the resulting peptide, CoSODA, reacts with oxygen in an unexpected two step process that models the biosynthesis of Co nitrile hydratase. First, the thiolate sulfur is oxidized and then the metallocenter is oxidized to Co(III). In Chapter 3, I show that both CoSODA and CuSODA form CN- adducts. Spectroscopic investigations of these metallopeptides are compared with data from NiSODA and Ni(CN)SODA to show the remarkable geometric versatility of SODA with respect to interactions with metallocenters. In Chapter 4, exploiting the propensity of sulfur ligands to form bridging structures, NiSODA is used as a metallosynthon to direct synthesis of hetero bi- and tri-metallic peptides as models for [NiFe]-hydrogenases and the A cluster of acetyl-CoA synthase carbon monoxide dehydrogenase. Building on this synthetic strategy, in Chapter 5, I demonstrate synthesis of NiRu complexes including a Ru(bipyridine)2 moiety and characterize their photochemistry. / Dissertation/Thesis / Ph.D. Chemistry 2012
3

Structure and Activity of Metallo-Peptides

Tang, Christian C. 03 July 2017 (has links)
Metal ions are ubiquitously found in all living systems and play vital roles in supporting life forms by performing an array of biological activities. Such biological activities include binding and transforming organic molecules, and also acting as active centers and cofactors for catalysis of various acid-base and redox reactions in biological system. The main focus in bioinorganic chemistry is to elucidate the structural and functional roles of metals in biological systems. Among all transition metal ions, Cu2+ and Fe3+ are especially versatile and important due to their abilities to go through redox efficiently. This dissertation can be divided into four main chapters. The bioinorganic chemistry of Cu- and Fe-containing proteins were briefly discussed in Chapter one. The next chapter focuses on bacitracin, a cyclic peptide-based antibiotic produced by soil bacteria Bacillus subtilis. Bacitracin is a metalloantibiotics that can coordinate with many transition metal ions and exhibit different biological activities. In the first part of Chapter two, the aim is to explore the chemicals interactions in soil micro-ecology by investigating the interactions of different flavonoids and Cu(II)-bacitracin complex. The second part of chapter two demonstrated the binding and oxidation activity of iron(III)-bacitracin. Metal-mediated oxidative stress plays a crucial role in the development of different neurodegenerative diseases. In chapter 3, various synthetic and natural compounds were used to inhibit the oxidation chemistry mediated by Cu(II)-beta-amyloid complex associated with Alzheimer’s disease. Many proteins incorporate copper ions at their active sites for different functions, and among all of the chemistry copper-containing-proteins can perform, one of the most interesting aspect is the ability to bind and activate O2. Therefore, the biomimetic of two different Cu(II) complexes were investigated. In all studies, a combination of kinetic and different spectroscopic methods (UV-vis, NMR and resonance Raman spectroscopy) were used to study their metal binding and activity.
4

In vitro and in vivo studies of DNA cleavage and targeted cleavage of HIV REV response element RNA by metallopeptides

Jin, Yan 14 September 2006 (has links)
No description available.
5

Catalytic Metallopeptide Promoted Inactivation of Enzyme Targets Related to Disease: Angiotensin Converting Enzyme-1 and SortaseA

Hocharoen, Lalintip 19 December 2012 (has links)
No description available.
6

The Bioinorganic Chemistry Of Copper-Containing Systems: From Type-3 Systems Pertinent To Alzheimer’s Disease To Mononuclear Hydrolysis Involved In Biological Development

Da Silva, Giordano Faustini Zimmerer 09 May 2007 (has links)
Although transition metals are essential for life, misregulation of redox-active metal uptake, delivery, storage, and excretion has been linked with a series of neurodegenerative disorders. Alzheimer's disease (AD) is considered an epidemic and is the most widespread of all forms of dementia. Copper ions found in large concentrations localized in amyloid-ß plaques in the brain of AD patients have been linked with the generation of reactive oxygen species which are suspected to be the culprits leading to neuronal cell death. Herein a series of mechanistic and spectroscopic studies elucidate the chemistry about the metal-centered oxidation of biomolecules, including catecholamine neurotransmitters and some analogues by copper-complexes of amyloid-ß peptide. Transition metals can also be useful tools for characterization of metalloproteins due to their unique chemical and spectroscopic features. Herein a series of studies of the native Zn²+ and Cu²+-derivative of recombinant Blastula Protease 10 (BP10) from the sea urchin Paracentrotus lividus are presented in order to elucidate its catalytic mechanism, with the use of enzymology, metal substitution, and electronic absorption spectroscopy.
7

Metallopeptides From Design to Catalysis: Structure, Oxidative Activities, And Inhibition Studies Of Designed And Naturally Occurring Metallopeptides

Hashim, Alaa Hassan 19 November 2014 (has links)
Structural and mechanistic complexities of copper-dioxygen systems have attracted much attention in the field of bioinorganic chemistry, both in model systems and trapped protein intermediates. The research presented herein is focused on model and naturally occurring metallopeptide systems, from its design to catalysis. Copper is used as the coordinating metal ion, with cobalt and zinc as probes for metal binding. The bioinorganic chemistry of copper proteins and its coordination and spectroscopic properties are briefly discussed in chapter 1. The next two chapters are centered on the de novo design of a minimalistic metallopeptide system with an amino acid sequence of RHHPPHHE. Structural characterization of the peptide by means of CD and NMR spectroscopy techniques are presented in chapter 2, suggesting a characteristic beta-turn structure in its apo and di-metal bound form. The designed metallopeptide exhibits catecholase activity, which is presented in chapter 3. The data suggest the presence of two mononuclear copper active sites, exhibiting specificity towards the oxidation of catecholamine substrates. Similarly, the catecholase activity has been previously observed in copper complexes of Alzheimer's disease related peptide beta-amyloid, exhibiting metal-centered redox chemistry. The metallo-(beta-amyloid); complexes are the hallmark Alzheimer's disease and have been attributed to the generation of reactive oxygen species causing oxidative stress. Thus, inhibition of the observed oxidative activities was investigated. Probing the role of phosphate moieties in various compounds as potential inhibitors against the induced oxidative stress is presented in chapter 4. The phosphate analogs of the studied compounds exhibit more pronounced potency, where mutation of the beta amyloid peptide at Arg-5 and Lys-16 give insight into the interactions of the side chains of Arg and Lys with the phosphate moiety. 31P NMR relaxation studies further support the binding/interaction of phosphate with the Cu(II)-(beta-amyloid); complexes. The correlation of phosphate moiety binding/activity will allow for the design of more potent inhibitors toward the Cu(II)-(beta-amyloid); induced oxidative stress.
8

Synthesis and Applications of Dirhodium Metallopeptides

Zaykov, Alexander 05 September 2012 (has links)
The work describes the development of a new class of synthetic metallopeptides that features a dirhodium metal center. Combination of peptide and dirhodium properties leads to unique effects on peptide structure, peptide-protein interactions, and metal catalytic activity aimed at small molecule as well as protein substrates. Dirhodium is directly bound to carboxylate side chains of aspartate or glutamate yielding kinetically inert coordination complexes. This improves stability, allows purification and provides enhanced biocompatibility. Bridging of two side chains in the same sequence enables control of the peptide secondary structure. Dirhodium metallopeptides are applied to regulate coiled coil dimerization, stabilize and induce helical secondary structure, catalyze enantioselective organometallic transformation, and serve as ligands for proteins. These results lead to the development of hybrid organic-inorganic therapeutic agents, biological probes for study of protein-protein interactions, and enantioselective metallopeptide catalysis.
9

Oxidative Biocatalysis in Metallotherapeutics and Metalloenzymes

Pinkham, Andrew M. January 2018 (has links)
No description available.

Page generated in 0.071 seconds