• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 18
  • 12
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Invadolysin's activity : discerning mechanism and cellular roles

Abhinav, Kanishk January 2016 (has links)
Invadolysin is a novel metalloprotease, which is conserved amongst metazoans and was first identified in the Heck laboratory. Proteases play a variety of roles in normal physiology. Invadolysin is essential for life in Drosophila. Invadolysin has been shown to be essential for cell division and cell migration. Invadolysin is the only metalloprotease that we know of which localizes to lipid droplets, the lipid storage cell organelle. Previous studies have also shown that invadolysin mutants have a lower triglyceride to protein ratio and reduced fat body thickness and cross sectional area. Fat body in Drosophila is the functionally homolog of adipose tissue in higher organisms. Further suggesting a role of invadolysin in metabolism. In the Heck laboratory, invadolysin is studied using model organisms such as Drosophila melanogaster, Danio rerio (zebrafish) and cultured cell lines. During my PhD, my aim was to study the biosynthesis, activity and function of invadolysin and investigate its role in metabolism and adipogenesis. Invadolysin has a conserved metalloprotease motif ‘HEXXH’ and a potential lipase motif ‘GXSXS’. One of the aims of my PhD was to generate mutant versions of the conserved motifs to study their role on the activity of the proteins. I have generated transgenic flies that express wild type or E258A (protease dead) or S266A (lipase dead) versions of invadolysin. These transgenic flies would help in the study of the importance of the metalloprotease ‘HEILH’ and the lipase ‘GFSVS’ motifs in invadolysin’s activity. Transgenic flies overexpressing wild type and lipase dead form of invadolysin accumulate significantly higher levels of triglycerides as compared to control flies and transgenic flies overexpressing protease dead form of invadolysin. Suggesting a role of the protease motif in lipid accumulation. The other aim of my PhD was to study the role of invadolysin in metabolism. I followed up on previous observations in the laboratory that the insulin-signalling pathway is impaired in invadolysin mutant animals – with the hypothesis that invadolysin plays a role in metabolism and adipogenesis. I used Drosophila to study the effect on downstream targets of the insulin-signalling pathway such as triglyceride synthesis, glycogen synthesis and autophagy in invadolysin mutants. Results suggest that the insulin-signalling pathway and the ability to accumulate lipids are impaired in invadolysin mutants. Insulin also regulates adipogenesis by regulating the expression of PPARγ. I used SGBS cells, a human preadipocyte cell line to study the role of invadolysin in adipogenesis. Increase in protein levels of invadolysin during adipogenesis indicates a potential role of invadolysin in adipogenesis. Invadolysin has a predicted N-terminal signal sequence and also a predicted Cterminus GPI anchor site that suggests invadolysin can either be secreted or anchored to a membrane. Also, leishmanolysin, the closest homolog of invadolysin exists in a secreted and membrane bound form apart from a cytosolic form. This encouraged me to investigate the presence of a secreted form of invadolysin. Analysis of vertebrate and invertebrate plasma fractions of blood and hemolymph led to the identification of a novel secreted form of invadolysin. This novel discovery places invadolysin alongside a small group of metalloproteases, which are secreted into the extracellular environment and which play multiple roles in normal physiology and disease states.
2

Studies on invadolysin : a novel metalloprotease localizing to lipid droplets

Chang, Ching-Wen January 2009 (has links)
Invadolysin (INV) is a member of the M8 family of metzincin metalloproteases. The gene was discovered in the Heck laboratory. Based on studies in Drosophila, INV is important for mitotic progression, nuclear envelope protein dynamics, and germ cell migration. INV-like immunoreactivity has shown its association with lipid droplets (LDs), which are intracellular organelles for lipid and protein storage. INV is the first metalloprotease found on LDs. Thus, INV’s role and LD-associated pathways are the puzzles we would like to investigate. The formation of LDs is dependent on the nutritional status of cells and starvation can disrupt the generation of LDs. Based on this concept, I established a starvation / re-feeding system. When nutrition is sufficient, LDs were surrounded by INV, whereas no INV or LDs were found in the majority of starved cells. With a supply of oleic acid (OA), LDs re-appeared and so did INV localized to LDs. In this system, inhibition of protein kinase C (PKC) disrupts INV’s re-localization to LDs. As I found INV to be phosphorylated by PKC in vitro (residues within the N-terminus might be phosphorylated by PKC), I conclude that PKC might regulate INV’s re-localization in the starvation / re-feeding system. 3T3-L1 mouse fibroblasts can differentiate into adipocytes in vitro; this is termed adipogenesis. Since INV is a LD associated protein, the role of INV in adipogenesis is of interest. INV localized on LDs in the early stage of differentiation but disassociated from LDs in mature adipocytes. The levels of INV mRNA and protein were significantly increased upon differentiation to adipocytes. On the other hand, INV decreased when adipocyte differentiation was inhibited by PKC and PI3K inhibitors, suggesting that the increase of INV is required for adipocyte differentiation. I was interested to examine the possible role of INV in InR/PI3K/Akt signalling, and therefore compared wild type with mutant INV (Drosophila INV4Y7). Decreased levels of phospho-Akt and phospho-S6K, and increased mRNA levels of d4E-BP were observed in INV4Y7 mutant larvae, suggesting that INV may be required for InR/PI3K/Akt signalling. In addition, a decreased level of Lsd2 (LD binding protein) was found in INV4Y7 mutants. These correlations between INV and molecules important for signaling suggest that INV might be a mediator of nutritional metabolism. In light of these data, I speculate that INV plays a homeostatic role, possibly by affecting the InR/PI3K/Akt signaling pathway. In conclusion, the localization of INV to LDs is dependent on the activity of PKC. An increase in invadolysin accompanies adipogenesis, in which PKC and PI3K may be mediators. Examining mutant Drosophila, I found INV to be involved in InR/PI3K/Akt signalling. Collectively, I conclude that INV may serve as a regulator in adipogenesis and the InR/PI3K/Akt signaling pathway.
3

The Role of the Propeptide and its Residues in Activation and Secretion of Elastase, an M4 Metalloprotease Secreted by Pseudomonas aeruginosa

Boice, Emily 27 April 2011 (has links)
Pseudomonas aeruginosa secretes several proteases associated with pathogenesis, but the most abundant and active is elastase (M4 metalloendopeptidase). Elastase (lasB), is first synthesized as a preproenzyme, with a signal peptide, an 18-kDa N-terminal propeptide, and a 33-kDa mature domain. The propeptide functions as an intramolecular chaperone that is required for the folding and secretion of elastase, but ultimately is proteolytically removed and degraded. Previous research has identified the conserved residues in the propeptide of elastase as compared to other M4 protease precursors and showed some among them to be important for the production of active elastase. In this project, the ability of the propeptide alone to fold into a defined secondary structure was explored and a molecular model was created. Furthermore, the effects of substitutions on conserved residues in the propeptide of plasmid-encoded lasB pro alleles were assessed by expressing them in a lasB propeptide mutant. The kinetics of elastase activity in culture supernatants was quantitated using a fluorescent substrate, Abz-AGLA-p-Nitro-Benzyl-Amide, to provide an accurate assessment of the effects of mutant propeptides. In vitro refolding studies were also performed to determine the effects of specific substitutions on foldase activity of the propeptide. When wild-type propeptide and mature elastase were denatured as separate proteins in guanidine-HCl buffer and renatured together, restoration of activity of the refolded elastase was measured, which was propeptide-dependent. Several mutant propeptides have now been shown to have defects using this in vitro foldase assay. Additional mutants were near wild-type activity level suggesting their role in recognition by the secretion apparatus. Residue locations were determined on a molecular model of the complex and confirmed the role of the secretion mutants as residues on the exterior. Residues that had diminished ability to refold in the in vitro assay were found to be in the interior parts of the complex, confirming their ability to be critical residues at the interface of the proteins or important in the stability of the propeptide’s intrinsic structure. The goal was to perform a series of comprehensive analyses of the propeptide and its conserved residues in order to determine its role as an intramolecular chaperone.
4

Effects of Hyperthermia and Subsequent Minocycline Treatment in Acute Ischemic Stroke

Rahman, Shakib Hafizur Unknown Date
No description available.
5

X-RAY CRYSTALLOGRAPHY OF RECOMBINANT LACTOCCOCUS LACTIS PROLIDASE

2015 October 1900 (has links)
Prolidase has potential applications in cheese debittering, organophosphate detoxification and as an enzyme replacement therapy in prolidase-deficient patients. Recombinant Lactococcus lactis prolidases and their catalytic properties have previously been characterized in Dr. Tanaka's research group. Unlike other prolidases, L. lactis prolidase shows allosteric behaviour, metal-dependent substrate specificity and substrate inhibition. The current project focuses on elucidating the three-dimensional structure of L. lactis prolidase using X-ray crystallography. Hexagonal plate-like crystals of wild-type L. lactis prolidase were grown by the hanging drop vapour diffusion method, allowing the crystals to grow to about 50 µm in their longest dimension. The crystallization cocktail in which they grew contained 0.08 M sodium cacodylate (pH 6.5), 0.16 M calcium acetate, 14 % PEG 8000 and 18 % glycerol. Crystal diffraction data was collected at a wavelength of 0.9795 Å on beamline 08ID-1 of the Canadian Macromolecular Crystallography Facility at the Canadian Light Source and was processed using X-ray Detector Software. The crystals belonged to space group C2 and estimated to contain three molecules in an asymmetric unit. The electron density map of this structure was solved by the molecular replacement method and the structure model was refined against 2.25 Å resolution data. Molecule A forms a dimer with molecule B, while molecule C forms a dimer with molecule C', which is located in the neighbouring crystal asymmetric unit. The electron density of molecule A was well-defined and complete. Therefore, all the 362 amino acid residues of L. lactis prolidase were fitted. The other two molecules were incomplete and less defined. Only 360 and 352 residues could be fitted in molecules B and C, respectively. Molecule C, the worst of the three, compromised the overall quality of the refined structure. However, the functional interpretation of the structure was not compromised since the well-defined molecules form a dimer with each other and the biologically-functional form of L. lactis prolidase is a homodimer. The final Rwork and Rfree are 22.39 and 27.77, respectively. Comparison with other known prolidases revealed that Asp 36 and His 38 are unique to L. lactis prolidase. These residues have been shown to be involved in the allosteric behaviour and substrate inhibition of this enzyme, respectively. Therefore, this crystal structure further supports their suggested contribution in L. lactis prolidase's unique catalytic properties.
6

MODULATION OF HOST ACTIN CYTOSKELETON BY A LEGIONELLA PNEUMOPHILA EFFECTOR

Yao Liu (5930000) 04 January 2019 (has links)
<i>Legionella pneumophila,</i> the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates over 330 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK (Lpg0969) as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H<sub>95</sub>E<sub>XX</sub>H<sub>99</sub> (x, any amino acid) motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage occurs during <i>L. pneumophila </i>infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, <i>L. pneumophila</i> exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.
7

Effects of Vibrio cholerae protease and pigment production on environmental survival and host interaction

Vaitkevicius, Karolis January 2007 (has links)
Only two out of more than 200 V. cholerae serogroups, classified on the basis of LPS structure, are associated with epidemic or pandemic cholera. These toxigenic serogroups carry phage-derived pathogenicity islands coding for the main virulence factors for establishment of cholera disease – cholera toxin (CTX) and toxin-coregulated pilus (TCP). The latter also serves as a bacterial surface receptor for the CTXΦ – the filamentous phage which carries the cholera toxin genes into otherwise harmless to human, environmental bacterium V. cholerae. In its natural aquatic habitat V. cholerae is subject to predator grazing, bacteriophage killing, temperature and pH changes, seasonality of plankton blooms and other environmental factors. Therefore understanding V. cholerae pathogenic and virulence potential requires the knowledge of its interaction not only with human host but also members of aquatic environment and environmental factors. V. cholerae is capable of killing the nematode Caenorhabditis elegans. Using a reverse genetics approach, we demonstrated that the quorum sensing regulated protease PrtV is essential for this killing. Other proteases did not seem to contribute to virulence in this model. The data from this study suggest that the PrtV could be important to V. cholerae in its natural niche for its resistance to the grazing predators. The PrtV protease belongs to an M6 family of metallopeptidases which is represented by an Immune Inhibitor A protease from the insect killing bacterium Bacillus thuringiensis. To characterize the protease in more detail, the PrtV was cloned, overexpressed in V. cholerae and purified from the culture supernatant. The enzyme was calcium stabilized and inhibited by metal ion chelators. In tests with in vitro cultured cells of the human intestinal cell line HCT8, the PrtV protein showed a cytotoxic effect leading to cell detachment and death. Using human blood plasma as a source of potential substrates, and by tests with purified candidate substrate proteins, we have identified fibrinogen (all α, β and γ chains), fibronectin and plasminogen to be degraded by the protease. Additionally, PrtV was found to alter the stability of V. cholerae cytolysin implicating its role in modulation of the reactogenicity of V. cholerae secreted factors. Pigmentation has been considered to be important in microbial pathogenesis because it has been associated with virulence in many microorganisms. Using transposon mutagenesis we identified the mutated locus of a pigment producing V. cholerae strain to encode a gene of a tyrosine catabolic pathway. The mutation in a putative homogentisate 1,2-dioxigenase gene lead to accumulation of homogentisic acid, its spontaneous oxidation and formation of a dark pigment. The pigment producing strain was altered in its ability to survive UV exposure and H2O2 stress, and was more efficient in colonizing the suckling mouse intestine compared to the wild type strain. Under the in vitro growth conditions the major virulence factor TcpA and CT expression was found to be somewhat enhanced too.
8

Investigation of proteolysis of the basement membrane during the development of equine laminitis

Michelle Visser Unknown Date (has links)
It is well established that failure of the lamellar basement membrane (BM) occurs during the development of equine laminitis. This is due to loss of the crucial BM components; laminins and collagens along with loss of attachment complex, the hemidesmosome, of the basal cell to the underlying BM. Previous studies have suggested that Ln-332 may be the primary protein involved in lamellar failure. However, the details of the progression and mechanism involved in this pathology are not currently fully known. This thesis aimed to refine the proteolytic processes and mechanisms occurring during the development of oligofructose induced laminitis. Through the use of novel temporal lamellar biopsies obtained during the development of laminitis induction, it was determined that loss of both Ln-332 and collagen type IV occurs as early as 12 hours post induction. This loss of reactivity initially occurred in a focal pattern with increasing loss as the disease progressed in severity. At the later stages of laminitis, separation of the basal epithelial cell from the dermal tissue was also observed, however at these points the BM still appeared intact. This suggests that more than one mechanism may be involved in disease pathology; one resulting in fragmentation of the BM while a second results in loss of the cell attachment allowing the intact BM to slip away. Immunohistochemical analysis of lamellar tissue revealed a unique pattern of reactivity for the Ln-332 γ2 antibody D4B5, in which no reactivity was observed in normal lamellar tissue, yet the epitope recognized by this antibody becomes apparent during disease development. This initially led to the hypothesis that cleavage of the γ2 subunit and the release of biologically active fragments may occur. However, at the molecular level, no γ2 fragments were detected by western blotting. In vitro cleavage of partially purified equine Ln-332 revealed that both MMP-2 and MT1-MMP were able to process the molecule to produce fragments corresponding to the biologically active counterparts. This suggests that the change in reactivity with this antibody may be due to other mechanisms such as decreased interaction of Ln-332 with other BM components resulting in loss of structural stability of the BM allowing for a change in the orientation of Ln-332. Increased MMP-2, MMP-9 and MT1-MMP expression has been demonstrated in laminitis and this was assumed to be the causative agent resulting in tissue destruction and failure. However, work in this thesis found no increase in gene expression of MMP- 2 and MT1-MMP, as well as no activation of pro MT1-MMP. Increased pro MMP-9 gene and protein expression was observed early in the disease progression yet no MMP- 9 activation occurred. Additionally, activation of MMP-2 was found to occur late in laminitis progression at least 12 hours following BM degradation, thus MMP-2 activation is a secondary effect of laminitis development. Thus, other proteases are expected to result in BM processing. Gene expression of the metalloprotease ADAMTS-4, was observed to increase early during laminitis development, suggesting this is a putative factor involved in intensifying the degradation of the lamellar BM. Work in this thesis also revealed that both Ln-332 and collagen type IV are widely distributed throughout organs in the equine body and localized primarily to BM structures. A novel finding of this thesis is that not only does BM degradation occur in the lamellar BM, it also occurs in organs remote from the hoof. At both the onset of lameness and the acute phase of laminitis, fragmentation of both Ln-332 and collagen type IV also occurs in both the skin and stomach. Recent studies have indicated that both leukocyte emigration and increased cytokine expression occurs in the lamellar tissue during laminitis. Work in this thesis added to this knowledge as leukocyte infiltration into the lamellar tissue occurs early during oligofructose laminitis induction as does increased IL-6 gene expression. Overall, work conducted in this thesis has added to the knowledge of the events occurring during laminitis development. Even though the complete mechanism of tissue destruction and lamellar failure was not established, the progression of events is now more clear in that BM degradation is one of the first events to occur, while MMP-2 activation occurs secondarily. Thus, other mechanisms must be at work early during laminitis development and discovering what they are must remain a research priority for the realization of effective therapeutic strategies.
9

Inhibition of zinc-dependent peptidases by Maillard reaction products

Missagia de Marco, Leticia 12 March 2015 (has links) (PDF)
The Maillard reaction is a network of different non-enzymatic reactions between carbonyl groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which progresses in three major stages and originates a very heterogeneous mixture of reaction products. It is also known as non-enzymatic browning, due to the brown macromolecular pigments formed in the final stage of the reaction. The chemistry underlying the Maillard reaction is complex. It encloses not only one reaction pathway, but a whole network of various transformations. As virtually all foods contain both proteins and carbohydrates, Maillard reaction products are present in the daily diet in considerable amounts. The endogenous formation of Maillard reaction products, especially related to ageing and diabetes, aroused intense discussions about the health consequences of the “glycation”, the term that describes the in vivo reaction corresponding to the Maillard reaction in foods. Melanoidins are the final brown products of the Maillard reaction. They are responsible for the color formed during the heat processing of foods like coffee, bread, malt, and beef. Melanoidins are high molecular weight polydisperse polymers containing nitrogen. Their structure is largely unknown. Coffee melanoidins, which are object of the present study, contain thermally transformed polysaccharides, proteins, and phenolic compounds. Since the mechanisms involved on the formation of these macromolecules, and the chemical transformations which take place during the heat treatment are not completely elucidated, key structural features were analyzed. Especially the incorporation of chlorogenic acids in the melanoidin skeleton was object of attention of the present work. Another major aim of this work was to investigate the influence of the Maillard reaction on the inhibitory potential of food components against zinc metalloproteases. The studied enzymes were three human matrix metalloproteases (MMP-1, -2 and -9), which are able to degrade matrix proteins and participate in many physiological processes, including tissue turnover and repair, but also constitute important targets in malignant and degenerative diseases. A microbial collagenase from Chlostridium histolyticum was chosen due to its subtract similarity to MMPs. Furthermore, Angiotensin Converting Enzyme (ACE), which plays a central role in cardiovascular pathologies such as hypertension and cardiac hypertrophy, was investigated. As a prototypical Maillard reaction product, coffee melanoidin was adopted. Due to the roast dependent inhibitory activity of the coffee melanoidin fractions against matrix metalloproteases, the functionalization caused by the non-enzymatic browning was closer investigated. Na-carboxyalkylated derivatives of a sequence of relevant peptides were synthesized, in a variation of the process-induced formation of Nε-carboxymethyllysine, a major advanced glycation end-product (AGE). The inhibitory activity against zinc metalloproteases of the sequence of selected peptides and their Na-carboxymethyl- (CM-) and Na-carboxyethyl- (CE-) derivates was investigated.
10

Inhibition of zinc-dependent peptidases by Maillard reaction products

Missagia de Marco, Leticia 09 March 2015 (has links)
The Maillard reaction is a network of different non-enzymatic reactions between carbonyl groups of reducing sugars and amino groups from amino acids, peptides, or proteins, which progresses in three major stages and originates a very heterogeneous mixture of reaction products. It is also known as non-enzymatic browning, due to the brown macromolecular pigments formed in the final stage of the reaction. The chemistry underlying the Maillard reaction is complex. It encloses not only one reaction pathway, but a whole network of various transformations. As virtually all foods contain both proteins and carbohydrates, Maillard reaction products are present in the daily diet in considerable amounts. The endogenous formation of Maillard reaction products, especially related to ageing and diabetes, aroused intense discussions about the health consequences of the “glycation”, the term that describes the in vivo reaction corresponding to the Maillard reaction in foods. Melanoidins are the final brown products of the Maillard reaction. They are responsible for the color formed during the heat processing of foods like coffee, bread, malt, and beef. Melanoidins are high molecular weight polydisperse polymers containing nitrogen. Their structure is largely unknown. Coffee melanoidins, which are object of the present study, contain thermally transformed polysaccharides, proteins, and phenolic compounds. Since the mechanisms involved on the formation of these macromolecules, and the chemical transformations which take place during the heat treatment are not completely elucidated, key structural features were analyzed. Especially the incorporation of chlorogenic acids in the melanoidin skeleton was object of attention of the present work. Another major aim of this work was to investigate the influence of the Maillard reaction on the inhibitory potential of food components against zinc metalloproteases. The studied enzymes were three human matrix metalloproteases (MMP-1, -2 and -9), which are able to degrade matrix proteins and participate in many physiological processes, including tissue turnover and repair, but also constitute important targets in malignant and degenerative diseases. A microbial collagenase from Chlostridium histolyticum was chosen due to its subtract similarity to MMPs. Furthermore, Angiotensin Converting Enzyme (ACE), which plays a central role in cardiovascular pathologies such as hypertension and cardiac hypertrophy, was investigated. As a prototypical Maillard reaction product, coffee melanoidin was adopted. Due to the roast dependent inhibitory activity of the coffee melanoidin fractions against matrix metalloproteases, the functionalization caused by the non-enzymatic browning was closer investigated. Na-carboxyalkylated derivatives of a sequence of relevant peptides were synthesized, in a variation of the process-induced formation of Nε-carboxymethyllysine, a major advanced glycation end-product (AGE). The inhibitory activity against zinc metalloproteases of the sequence of selected peptides and their Na-carboxymethyl- (CM-) and Na-carboxyethyl- (CE-) derivates was investigated.:LIST OF CONTENTS I LIST OF TABLES IV LIST OF FIGURES V LIST OF ABBREVIATIONS VII 1 INTRODUCTION 1 2 BACKGROUND 3 2.1 Maillard reaction in food 3 2.1.1 Melanoidins 8 2.2 Coffee 11 2.2.1 General aspects 11 2.2.1.1 Coffee production 12 2.2.1.2 General chemical composition 14 2.2.1.3 Coffee and health 20 2.2.2 Coffee melanoidins 24 2.2.2.1 Chemistry of coffee melanoidins 24 2.2.2.2 Properties of coffee melanoidins 29 2.3 Zinc metallopeptidases 32 2.3.1 Matrix metalloproteinases (MMPs) 33 2.3.1.1 Functions of MMPs 35 2.3.1.2 Structure of MMPs 37 2.3.1.3 Inhibition of MMPs 39 2.3.2 Clostridium histolyticum collagenase (ChC) 43 2.3.2.1 Functions of ChC 43 2.3.2.2 Structure of ChC 43 2.3.2.3 Inhibition of ChC 44 2.3.3 Agiotensin converting enzyme (ACE) 45 2.3.3.1 Functions of ACE 45 2.3.3.2 Structure of ACE 46 2.3.3.3 Inhibition of ACE 48 3 EXPERIMENTAL SECTION 50 3.1 Chemicals, materials and equipment 50 3.1.1 Chemicals 50 3.1.2 Material 52 3.1.3 Equipment 52 3.1.4 Solutions 54 3.2 Synthesis of Nα-carboxyalkylated peptides 55 3.2.1 Nα-carboxyalkylation of GP, LL, IA, GA, GL, AP, IP and IPP by reductive alkylation 55 3.2.2 Nα-carboxyalkylation of IW using sodium cyanoborohydride 56 3.3 Purification 57 3.3.1 Ion Exchange Chromatographic purification 57 3.3.1.1 Spotting test 58 3.3.2 HPLC purification of CM-IW 58 3.3.3 Overview of the synthesis and elution conditions 59 3.4 Characterization of carboxyalkylated peptides 61 3.4.1 Mass spectrometry 61 3.4.2 Elemental Analysis 61 3.4.3 Analytical characteristics of carboxyalkylated peptides 62 3.5 Preparation of coffee fractions 65 3.5.1 Roasting conditions 65 3.5.2 Fractionation of coffee samples: Isolation of coffee melanoidins 67 3.6 Structural studies 69 3.6.1 Estimation of the molecular weight 69 3.6.2 C/N ratio 70 3.6.3 Amino acid analysis 70 3.6.3.1 Acid hydrolysis 70 3.6.3.2 General amino acid analysis 70 3.6.3.3 Lysinoalanine 71 3.6.3.4 Pentosidine 72 3.6.4 Total phenols 74 3.6.5 Raman spectroscopy 74 3.7 Study on inhibition of zinc metalloproteases 75 3.7.1 Inhibition of ACE 75 3.7.1.1 General enzymatic assay 75 3.7.1.2 Quantification 78 3.7.2 Inhibition of MMP-1, -2 and -9 79 3.7.2.1 General enzymatic assay 80 3.7.2.2 Effect of zinc addition on the inhibition of MMP-1 by melanoidins 81 3.7.3 Inhibition of ChC 82 3.7.3.1 General enzymatic assay 82 3.7.3.2 Quantification 84 3.7.4 Calculation of IC50 84 4 RESULTS AND DISCUSSION 86 4.1 Coffee melanoidins 86 4.1.1 Isolation of coffee fractions 86 4.2 Inhibition of zinc-dependent peptidases by coffee fractions 89 4.2.1 Inhibition of MMPs 89 4.2.2 Inhibition of other zinc metalloproteases 98 4.2.3 General considerations 99 4.3 Structural studies on coffee melanoidins 101 4.3.1 Gel permeation chromatography 102 4.3.2 Elemental analysis: C/N ratio 113 4.3.3 Amino acid analysis 116 4.3.4 Total phenolics 120 4.3.5 Correlation between total phenols content and C/N ratio in coffee melanoidins 123 4.3.6 Raman spectroscopy 124 4.4 Derivatization of peptides 129 4.4.1 Nα-carboxyalkylation of peptides by reductive alkylation 130 4.5 Preliminary investigations on the inhibitory potential of Nα-carboxyalkyl derivatives of peptides against metalloproteases 133 4.5.1 Inhibition against ACE 134 4.5.2 Inhibition against other zinc metalloproteases 138 5 SUMMARY 141 6 REFERENCES 145 LIST OF PUBLICATIONS AND CONFERENCE CONTRIBUTIONS 168 AKNOWLEDGMENTS 169 ERKLÄRUNG 170

Page generated in 0.0803 seconds