Spelling suggestions: "subject:"aerosolpartikel"" "subject:"einzelpartikel""
1 |
Thermisch und elektronenstrahlinduzierte Mikrostrukturveraenderungen in Plasmapolymer-Metall-CompositschichtenWerner, Jens 04 March 1997 (has links) (PDF)
Plasmapolymer-Metall-Compositschichten werden durch alternierende Plasmapolymerisation und thermische Verdampfung hergestellt. Dabei entsteht ein Mehrlagensystem aus Plasmapolymergrund-, Composit- und Plasmapolymerdeckschicht mit einer Gesamtdicke von ca. 100 nm. Die Informationen ueber Groesse, Form und Verteilung der dispers eingelagerten
Nanometallpartikel werden unter dem Begriff Mikrostruktur zusammengefasst. Deren Bestimmung erfolgt durch Transmissionselektronenmikroskopie (TEM) in
Verbindung mit optischer Bildverarbeitung.
Die Mikrostruktur veraendert sich unter Normalbedingungen nicht.
Veraenderungen werden zunaechst durch thermische Ausheizung induziert und im TEM nachgewiesen. Lokal begrenzte Mikrostrukturveraenderungen koennen durch eine Laser-Bestrahlung (NdYAG:1064 nm) induziert werden. Die optischen Eigenschaften des Mehrlagensystems werden nach der Herstellung und nach thermischer Ausheizung bzw. Laser-Bestrahlung bestimmt. Deren
Veraenderungen werden unter der Verwendung von Effektivmedien (Maxwell-Garnett, Bergman) modelliert und in Bezug zu Veraenderungen von Partikelgroesse und -form gesetzt.
Die zu Mikrostrukturveraenderungen fuehrenden physikalischen Prozesse werden durch Ausheizungen in situ im TEM untersucht. In Abhaengigkeit von der Mikrostruktur vor Beginn der Ausheizung und erreichter Temperatur waehrend der Ausheizung werden Rekristallisation und atomare Diffusion (Ostwald-Reifung,
Koaleszenz) gefunden. Unter Hochaufloesungsbedingungen im TEM wird erstmals eine elektronenstrahlinduzierte Koaleszenz von matrixeingelagerten Silberpartikeln in situ beobachtet.
Bei der externen Elektronenbestrahlung in einer UHV-Apparatur werden die gefundenen Prozesse bei elektronenstrahlinduzierten Mikrostrukturveraenderungen ausgenutzt. Die gegenwaertige Aufloesung liegt bei der Modifizierung von Linien der Breite von 2 Mikrometer bei einem Abstand von 4 Mikrometer.
|
2 |
Metallpartikel erhellen die Nanowelt: Optische Nahfeldmikroskopie an organischen Fluoreszenzmolekülen / Enlightening the nanoworld with metal particles: Scanning near-field optical microscopy of organic fluorescent moleculesHärtling, Thomas, Olk, Phillip, Wenzel, Marc Tobias, Eng, Lukas M. 01 October 2007 (has links) (PDF)
Modern optical microscopy is gaining deeper and deeper insight into the nanoworld. Conventional microscopy faces restrictions by both the diffraction limit and its sensitivity concerning the low intensities of nanoscale light sources. To be able to circumvent these drawbacks, scanning near-field optical microscopy (SNOM) has been implemented at the Institute of Applied Photophysics at the TU Dresden by applying optically active scanning probes in order to constitute interfaces between the macroscopic and the nanoscopic world. New probes functionalised with metal nanoparticles can resolve structures which are unreachable by traditional methods (~ 50 nm). Our work has led to inexpensive and fast fabrication of such probes allowing an unprecedented views of the nanoworld. / Die moderne optische Mikroskopie erlaubt es, der Nanowelt immer neue spannende Erkenntnisse zu entlocken. Jedoch ist die herkömmliche Lichtmikroskopie in ihrer Auflösung begrenzt und im Hinblick auf die geringe Intensität nanoskopischer Lichtquellen häufig nicht empfindlich genug. Um diese Probleme zu umgehen, wird am Institut für Angewandte Photophysik (IAPP) der TU Dresden die sogenannte optische Nahfeldmikroskopie eingesetzt. Hierbei dienen optisch aktive Sonden als Schnittstelle zwischen makroskopischer und nanoskopischer Welt. Diese am IAPP entwickelten neuartigen Sonden sind mit metallischen Nanopartikeln besetzt. Das Nahfeldmikroskop erlangt mit derartigen Sonden ein Auflösungsvermögen, welches weit jenseits der Möglichkeiten konventioneller Mikroskope liegt. Die Sonden können einfach und schnell hergestellt werden und erlauben der Nahfeldmikroskopie bisher unerreichte Einblicke in die Nanowelt.
|
3 |
Metallpartikel erhellen die Nanowelt: Optische Nahfeldmikroskopie an organischen FluoreszenzmolekülenHärtling, Thomas, Olk, Phillip, Wenzel, Marc Tobias, Eng, Lukas M. 01 October 2007 (has links)
Modern optical microscopy is gaining deeper and deeper insight into the nanoworld. Conventional microscopy faces restrictions by both the diffraction limit and its sensitivity concerning the low intensities of nanoscale light sources. To be able to circumvent these drawbacks, scanning near-field optical microscopy (SNOM) has been implemented at the Institute of Applied Photophysics at the TU Dresden by applying optically active scanning probes in order to constitute interfaces between the macroscopic and the nanoscopic world. New probes functionalised with metal nanoparticles can resolve structures which are unreachable by traditional methods (~ 50 nm). Our work has led to inexpensive and fast fabrication of such probes allowing an unprecedented views of the nanoworld. / Die moderne optische Mikroskopie erlaubt es, der Nanowelt immer neue spannende Erkenntnisse zu entlocken. Jedoch ist die herkömmliche Lichtmikroskopie in ihrer Auflösung begrenzt und im Hinblick auf die geringe Intensität nanoskopischer Lichtquellen häufig nicht empfindlich genug. Um diese Probleme zu umgehen, wird am Institut für Angewandte Photophysik (IAPP) der TU Dresden die sogenannte optische Nahfeldmikroskopie eingesetzt. Hierbei dienen optisch aktive Sonden als Schnittstelle zwischen makroskopischer und nanoskopischer Welt. Diese am IAPP entwickelten neuartigen Sonden sind mit metallischen Nanopartikeln besetzt. Das Nahfeldmikroskop erlangt mit derartigen Sonden ein Auflösungsvermögen, welches weit jenseits der Möglichkeiten konventioneller Mikroskope liegt. Die Sonden können einfach und schnell hergestellt werden und erlauben der Nahfeldmikroskopie bisher unerreichte Einblicke in die Nanowelt.
|
4 |
Thermisch und elektronenstrahlinduzierte Mikrostrukturveraenderungen in Plasmapolymer-Metall-CompositschichtenWerner, Jens 27 January 1997 (has links)
Plasmapolymer-Metall-Compositschichten werden durch alternierende Plasmapolymerisation und thermische Verdampfung hergestellt. Dabei entsteht ein Mehrlagensystem aus Plasmapolymergrund-, Composit- und Plasmapolymerdeckschicht mit einer Gesamtdicke von ca. 100 nm. Die Informationen ueber Groesse, Form und Verteilung der dispers eingelagerten
Nanometallpartikel werden unter dem Begriff Mikrostruktur zusammengefasst. Deren Bestimmung erfolgt durch Transmissionselektronenmikroskopie (TEM) in
Verbindung mit optischer Bildverarbeitung.
Die Mikrostruktur veraendert sich unter Normalbedingungen nicht.
Veraenderungen werden zunaechst durch thermische Ausheizung induziert und im TEM nachgewiesen. Lokal begrenzte Mikrostrukturveraenderungen koennen durch eine Laser-Bestrahlung (NdYAG:1064 nm) induziert werden. Die optischen Eigenschaften des Mehrlagensystems werden nach der Herstellung und nach thermischer Ausheizung bzw. Laser-Bestrahlung bestimmt. Deren
Veraenderungen werden unter der Verwendung von Effektivmedien (Maxwell-Garnett, Bergman) modelliert und in Bezug zu Veraenderungen von Partikelgroesse und -form gesetzt.
Die zu Mikrostrukturveraenderungen fuehrenden physikalischen Prozesse werden durch Ausheizungen in situ im TEM untersucht. In Abhaengigkeit von der Mikrostruktur vor Beginn der Ausheizung und erreichter Temperatur waehrend der Ausheizung werden Rekristallisation und atomare Diffusion (Ostwald-Reifung,
Koaleszenz) gefunden. Unter Hochaufloesungsbedingungen im TEM wird erstmals eine elektronenstrahlinduzierte Koaleszenz von matrixeingelagerten Silberpartikeln in situ beobachtet.
Bei der externen Elektronenbestrahlung in einer UHV-Apparatur werden die gefundenen Prozesse bei elektronenstrahlinduzierten Mikrostrukturveraenderungen ausgenutzt. Die gegenwaertige Aufloesung liegt bei der Modifizierung von Linien der Breite von 2 Mikrometer bei einem Abstand von 4 Mikrometer.
|
5 |
Optical Properties of Individual Nano-Sized Gold Particle Pairs / Optische Eigenschaften einzelner Gold-Nanopartikel-Paare / Mie-Scattering, Fluorescence, and Raman-ScatteringOlk, Phillip 13 August 2008 (has links) (PDF)
This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source – a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis – scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. / Diese Dissertation untersucht und nutzt die optischen Eigenschaften von Paaren von Metall-Nanopartikeln (MNP). MNP-Paare bieten gegenüber einzelnen MNP zwei weitere Parameter, welche beide auf das optische Nahfeld der zwei MNPs wirken: zum Einen der Abstand der zwei MNPs zueinander, zum Anderen die relative Ausrichtung des Paares bezüglich der Polarisation des anregenden Lichts. Diese Eigenschaften sind Thema der Arbeit: Ein Abschnitt untersucht den abstands- und orientierungsabhängigen Streuquerschnitt (SQS) zweier gleichgroßer MNPs. Die spektrale Position und die Breite des SQS wird von Wechselwirkungen sowohl im Nah- als auch im Fernfeld beeinflusst. Der Einfluß der Fernfeld-Wechselwirkung geht so weit, daß ein Zwei-MNP-System sowohl einen blau- als auch einen rotverschobenen SQS haben kann – dies hängt lediglich vom Abstand der zwei MNPs ab. Die Reichweite dieser Fernfeld-Wechselwirkung wird durch die Kohärenzlänge der Beleuchtungsquelle bestimmt – eine wichtige Tatsache für SQS-Untersuchungen, welche Laserquellen verwenden. Ein weiterer Teil der Dissertation untersucht das Nahfeld zwischen zwei MNPs. Insbesondere wird dargestellt, inwieweit die Überhöhung des Nahfelds von der Orientierung des Partikelpaares bezüglich der Polarisation des Anregungslichts abhängt. Um den Effekt quantifizieren zu können, wurde die Intensität der Fluoreszenz des umgebenden Mediums für verschiedene Polarisationsrichtungen gemessen. Die lokale Feldverstärkung konnte in eine Fluoreszenzverstärkung gewandelt werden, mit deren Hilfe sich sogar die Anwesenheit sehr kleiner MNPs von nur 12 nm Durchmesser nachweisen ließ. Wie Nahfeld-Intensitäten experimentell quantifiziert werden können, stellt ein dritter Abschnitt dieser Dissertation vor – per MNP-verstärkter Raman-Rastersonden-Mikroskopie. Diese Technik besteht aus einer Rastersonde, welcher ein MNP anheftet, welches wiederum mit einem Molekül bekannter Ramansignatur überzogen ist. Indem solch eine Sonde in die unmittelbare Nähe eines zweiten, beleuchteten MNPs gebracht wurde und dabei die Intensität des Raman-Signals aufgezeichnet wurde, ließ sich die räumliche Verteilung der Ramanverstärkung vermessen.
|
6 |
Herstellung und Charakterisierung von Keramik-Matrix-Verbundwerkstoffen mit Metallpartikel- oder MetallfaserverstärkungFranke, Peter 16 February 2018 (has links) (PDF)
Die exzellenten Eigenschaften einer Keramik beziehen sich auf den hohen Schmelzpunkt, die gute Hochtemperaturfestigkeit sowie hohe Elastizitätsmodul- und Härtewerte. Weiterhin zeichnen sich die anorganisch-nichtmetallischen Werkstoffebesonders durch ihre gute Korrosions- und Verschleißbeständigkeit aus.Bedingt durch die erschwerte Versetzungsbewegung weisen keramische Werkstoffeeine höhere Sprödigkeit auf. Metallische Werkstoffedagegen sind in der Regel duktil und zeigen meist ein duktiles Bruchverhalten. Lokale Spannungsspitzen können durch plastische Verformung abgebaut werden.Das Ziel dieser Arbeit ist es, das grundsätzlich unterschiedliche Werkstofferhalten einer Keramik und eines Metalls miteinander zu kombinieren, um die Bruchzähigkeit des Keramik-Metall-Verbundwerkstoffes zu erhöhenDie fein verteilten Metalle sollen die Rissausbreitung behindern. Es können unterschiedliche Mechanismen wirken. Im Vergleich zur unverstärkten Keramik ist eine höhere Bruchenergie aufzubringen, um den Riss voran zu treiben. Die Erhöhung der Bruchenergie spiegelt sich in einer höheren Bruchzähigkeit wieder.Um eine duktile Phase in einer spröden Zirkoniumdioxidmatrix zu erzeugen, werden für die Untersuchungen unterschiedliche Metalle eingebracht. Dadurch soll die Bruchzähigkeit als Schadenstoleranz gegenüber dem Totalversagen erhöht werden. Die resultierenden Eigenschaften der Keramik-Metall-Verbundwerkstoffewerden analysiert und charakterisiert.Die Untersuchungen umfassen das pulvermetallurgische Einbringen von metallischen Pulvern mit verschiedenen Teilchengrößen sowie die chemische Einbringung von Präkursoren, die in nanokristalline Metallpartikel umgewandelt werden. Dabei kommen verschiedene Metalle mit unterschiedlichen Wechselwirkungen und Spannungen durch thermische Fehlpassungen in der Matrix zur Anwendung. Zusätzlich wird die Auswirkung der Variation der Verstärkungsform (Partikel/Faser) und des Metallgehaltes untersucht.
|
7 |
Herstellung und Charakterisierung von Keramik-Matrix-Verbundwerkstoffen mit Metallpartikel- oder MetallfaserverstärkungFranke, Peter 30 August 2017 (has links)
Die exzellenten Eigenschaften einer Keramik beziehen sich auf den hohen Schmelzpunkt, die gute Hochtemperaturfestigkeit sowie hohe Elastizitätsmodul- und Härtewerte. Weiterhin zeichnen sich die anorganisch-nichtmetallischen Werkstoffebesonders durch ihre gute Korrosions- und Verschleißbeständigkeit aus.Bedingt durch die erschwerte Versetzungsbewegung weisen keramische Werkstoffeeine höhere Sprödigkeit auf. Metallische Werkstoffedagegen sind in der Regel duktil und zeigen meist ein duktiles Bruchverhalten. Lokale Spannungsspitzen können durch plastische Verformung abgebaut werden.Das Ziel dieser Arbeit ist es, das grundsätzlich unterschiedliche Werkstofferhalten einer Keramik und eines Metalls miteinander zu kombinieren, um die Bruchzähigkeit des Keramik-Metall-Verbundwerkstoffes zu erhöhenDie fein verteilten Metalle sollen die Rissausbreitung behindern. Es können unterschiedliche Mechanismen wirken. Im Vergleich zur unverstärkten Keramik ist eine höhere Bruchenergie aufzubringen, um den Riss voran zu treiben. Die Erhöhung der Bruchenergie spiegelt sich in einer höheren Bruchzähigkeit wieder.Um eine duktile Phase in einer spröden Zirkoniumdioxidmatrix zu erzeugen, werden für die Untersuchungen unterschiedliche Metalle eingebracht. Dadurch soll die Bruchzähigkeit als Schadenstoleranz gegenüber dem Totalversagen erhöht werden. Die resultierenden Eigenschaften der Keramik-Metall-Verbundwerkstoffewerden analysiert und charakterisiert.Die Untersuchungen umfassen das pulvermetallurgische Einbringen von metallischen Pulvern mit verschiedenen Teilchengrößen sowie die chemische Einbringung von Präkursoren, die in nanokristalline Metallpartikel umgewandelt werden. Dabei kommen verschiedene Metalle mit unterschiedlichen Wechselwirkungen und Spannungen durch thermische Fehlpassungen in der Matrix zur Anwendung. Zusätzlich wird die Auswirkung der Variation der Verstärkungsform (Partikel/Faser) und des Metallgehaltes untersucht.
|
8 |
Optical Properties of Individual Nano-Sized Gold Particle Pairs: Mie-Scattering, Fluorescence, and Raman-ScatteringOlk, Phillip 15 July 2008 (has links)
This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source – a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis – scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. / Diese Dissertation untersucht und nutzt die optischen Eigenschaften von Paaren von Metall-Nanopartikeln (MNP). MNP-Paare bieten gegenüber einzelnen MNP zwei weitere Parameter, welche beide auf das optische Nahfeld der zwei MNPs wirken: zum Einen der Abstand der zwei MNPs zueinander, zum Anderen die relative Ausrichtung des Paares bezüglich der Polarisation des anregenden Lichts. Diese Eigenschaften sind Thema der Arbeit: Ein Abschnitt untersucht den abstands- und orientierungsabhängigen Streuquerschnitt (SQS) zweier gleichgroßer MNPs. Die spektrale Position und die Breite des SQS wird von Wechselwirkungen sowohl im Nah- als auch im Fernfeld beeinflusst. Der Einfluß der Fernfeld-Wechselwirkung geht so weit, daß ein Zwei-MNP-System sowohl einen blau- als auch einen rotverschobenen SQS haben kann – dies hängt lediglich vom Abstand der zwei MNPs ab. Die Reichweite dieser Fernfeld-Wechselwirkung wird durch die Kohärenzlänge der Beleuchtungsquelle bestimmt – eine wichtige Tatsache für SQS-Untersuchungen, welche Laserquellen verwenden. Ein weiterer Teil der Dissertation untersucht das Nahfeld zwischen zwei MNPs. Insbesondere wird dargestellt, inwieweit die Überhöhung des Nahfelds von der Orientierung des Partikelpaares bezüglich der Polarisation des Anregungslichts abhängt. Um den Effekt quantifizieren zu können, wurde die Intensität der Fluoreszenz des umgebenden Mediums für verschiedene Polarisationsrichtungen gemessen. Die lokale Feldverstärkung konnte in eine Fluoreszenzverstärkung gewandelt werden, mit deren Hilfe sich sogar die Anwesenheit sehr kleiner MNPs von nur 12 nm Durchmesser nachweisen ließ. Wie Nahfeld-Intensitäten experimentell quantifiziert werden können, stellt ein dritter Abschnitt dieser Dissertation vor – per MNP-verstärkter Raman-Rastersonden-Mikroskopie. Diese Technik besteht aus einer Rastersonde, welcher ein MNP anheftet, welches wiederum mit einem Molekül bekannter Ramansignatur überzogen ist. Indem solch eine Sonde in die unmittelbare Nähe eines zweiten, beleuchteten MNPs gebracht wurde und dabei die Intensität des Raman-Signals aufgezeichnet wurde, ließ sich die räumliche Verteilung der Ramanverstärkung vermessen.
|
Page generated in 0.0478 seconds