• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Grundlegende Untersuchungen zum Laserstrahlbeschichten von Magnesiumlegierungen sowie zum artungleichen Laserstrahlschweißen mit Nd:YAG-Festkörperlaser und pulverförmigen Zusatzwerkstoffen

Kutschera, Ute. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Clausthal.
12

Utformning och installation av internetuppkopplad datalogger för kontinuerlig sintringsugn : Utveckling och implementation av Raspberry Pi baserad internetupkopplad datalogger, samt framtagning av lösningsförslag för viktmätning / Design and installation of internet-connected datalogger for continous sintering furnace : Development and implementation of Raspberry Pi based internet-connected datalogger, and generation of solutions for weight measuring

Nygårds, Erik, Oliw, Martin January 2021 (has links)
Höganäs AB has a customer center where they perform their cutomers production processes usingtheir own metal powder, thereby gaining knowledge of how the powder behaves and how it can be improved. The powder is usually pressed, and then sintered in a sintering furnace where temperature and atmosphere composition gives the component its desired characteristics. Höganäs AB didn’t save the parameters from these process’s in a easily accessible way, some values were not saved at all. To increase understanding of these parameters impact on the produced detail they wanted these parameters collected and stored in the cloud. They also wanted solution ideas and concepts for implementation of weight measuring on both the in- and output side of the furnace. This project used Ulrich & Eppinger’s product development method, modified by performing continous testing parallell to the design process. The project was also separated into three parts worked on simultaneously. Computer architecture, physical casing and weight measuring. To compile and upload to the cloud a Raspberry Pi 3 B+, a micro processor, was used. It connected via WiFi to upload files to OneDrive. The measured values from the furnace were gathered from the furnace’s PLC via OPCUA and a gas measuring unit via serial communication. Because of the use of metal powder there was conductive dust in the air which could lead to leakage currents and short circuiting if it were to gather on the processor unit. Hence the dust had to be keptaway. The casing was therefore designed to be relatively airtight. The casing was made with 3D-printed PETG. The seal utilized PETG’s elasticity to elastically deform an elevated seal, and thereby sealing the casing, without having to produce more components than a bottom and a lid. The cable feedthrough used the cables elastic deformation to seal. A screen was implemented to start and stop logging processes, which was also sealed using an overlapping lip around it’s rim. The logging of the furnace parameters was split in two logs, a day-log and a job-log. The daylog took measurements continously over a day in long intervals, 30 minutes. At the end of the day a log was uploaded for that day, hence the name. The job-log had to be started manually via the screen and was used to take measurements with higher frequency during a production series. Log files of both types were uploaded to a OneDrive folder. The product was tested with a number of final tests, both for the casing and the software. The casing was tested primarily for the numerical requirements set in the requirements specification. While the software was tested over a longer period of time to ensure functionality.The final product was a sealed, robust, easily disassembled and cable strain relieved 3D-printed box with a 3.5 inch touchscreen and a connected keyboard. It collected the desired data and compiled it to log files readable by programs such as Microsoft Excel. The weight measuring concept produced was a self-made solution with load cells under the loading ramp. The weight is then measured automatically during the regular loading process without disrupting it. Two backup solutions were also put forward.
13

Modelling the influence of porosity on fatigue strength of sintered steels

Hall, Emily January 2019 (has links)
The pores in pressed and sintered components constitute weak points in the material since the stress concentration is larger than the nominal stress there. Therefore, fatigue cracks initiate at the pores. Specifically, it can be assumed that the fatigue cracks initiate at the largest pore in the stressed volume. Studies have previously looked at finding ways to model the fatigue strength of the material based on the largest pore. This thesis looks at a model previously derived for hardened pressed and sintered materials that is based on linear elastic fracture mechanics and investigates if said model can be modified to include non-hardened pressed and sintered materials that do not necessarily behave linear elastically. A model describing the influence of the size of the largest pore on the fatigue limit using empirical coefficients is suggested. Furthermore, the area of the largest pore is modelled using extreme value statistics. The model proved successful in modelling the density effect of the porosity on the fatigue strength for two materials with different microstructures: one with a homogeneous microstructure and one with a heterogeneous microstructure. For the material with the homogenoeous microstructure the model also accounted well for the notch effect when tested on samples with a different geometry. However, for the heterogeneous material the model did not account for the notch effect. Deformation hardening due to local plastic deformation in the softer phases was suggested as a possible explanation and was supported by tensile tests.
14

Stochastische Modellierung des Rissaufweitungsverhaltens von faserverstärkten Materialien

Matthes, Sascha 20 April 2021 (has links)
In der vorliegenden Arbeit wird das bruchmechanische Verhalten von Materialien untersucht, welche mit einer Faserverstärkung ausgestattet sind. Dies geschieht unter Zuhilfenahme unterschiedlicher Ergebnisse und Methoden aus der stochastischen Geometrie. Ein zentrales Ergebnis dieser Arbeit ist die Entwicklung eines Modells einer stochastischen kohäsiven Zone, welche bruchmechanische Vorgänge nahe der Rissspitze faserverstärkter Materialien beschreibt. Hierbei können Eigenschaften der zufälligen Natur der Faserverstärkung wie z.B. die Verteilung der Faserlänge und -orientierung aber auch der Natur der zufälligen Lage der Fasern zueinander verwendet werden. Mit Hilfe dieser und weiterer Charakteristiken des faserverstärkten Materials kann sowie der mittlere mechanische Widerstand gegen Rissöffnung als auch die Varianz desselben berechnet werden. Damit bildet diese Arbeit eine wesentliche Erweiterung und Verallgemeinerung ähnlicher Ergebnisse aus der Vergangenheit, welche mit diesem Thema beschäftigten. Darin wird lediglich der mittlere mechanische Widerstand unter Annahme konstanter Faserlänge und isortroper Faserorientierung thematisiert. In der vorliegenden Arbeit wird gezeigt, dass für Materialien mit gestreuter Faserlänge diese Annahme zu erheblichen Modellierungsfehlern führen kann. Darüber hinaus wird ein numerisches Verfahren vorgeschlagen um die erarbeiteten mathematischen Gleichungen effizient auszuwerten. Mit Hilfe der damit verbundenen Berechnungen und praktischen Messungen an faserverstärkten Materialien konnten die Ergebnisse des stochastischen Modells validiert werden.:1. Einleitung 2. Grundlagen und Begriffe 3. Stochastische Darstellung von Fasersystemen 4. Modellierung des mittleren Spannungs-Separations-Verhaltens 5. Die Varianz des Separationswiderstands 6. Monte-Carlo-Simulation der Modus-I-Separation mit Fasern 7. Experimentelle Validierung und Anwendung des stocahstischen Modells 8. Zusammenfassung und Ausblick
15

Herstellung und Eigenschaften neuartiger, metallischer Polyederzellstrukturen

Reinfried, Matthias 01 November 2010 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es, die technologischen Schritte für die Herstellung eines geschlossenzelligen metallischen Werkstoffs aus Stahl zu untersuchen. Das Eigenschaftsbild dieses neuartigen zellular aufgebauten Werkstoffs soll umfassend beschrieben und mit bereits existierenden Werkstoffkonzepten verglichen werden. Die Grundidee für die Herstellung einer geschlossenzelligen Struktur bildet die Kombination der Technologie zur Herstellung von metallischen Hohlkugeln und Hohlkugelstrukturen mit dem Herstellungsprozesses für Partikelschäume aus expandierbarem Polystyrol (EPS). Dazu ist es notwendig zunächst Grünkugeln herzustellen, wie bei der Technologie der Hohlkugeln, wobei jedoch ein treibmittelhaltiges EPS zum Einsatz kommt, das mit einer Beschichtung aus Metallpulver und Binder versehen wird. Anschließend sollen die Grünkugeln in einer geschlossenen Form zum expandieren gebracht werden. Dazu wird, wie bei der Partikelschaumtechnologie für Teile aus expandierbarem Polystyrol (EPS), Wasserdampf verwendet. Der durch den Temperaturanstieg und das Treibmittel der EPS-Partikel in den Grünkugeln entstehende Innendruck führt zum Aufschäumen und zur Expansion jeder Grünkugel. In der Folge ändert jede Kugel ihre Form so lange, bis sie mit allen Nachbarn einen flächigen, stabilen Kontakt bildet. Der auf diesem Weg erzeugte Grünkörper kann dann entformt und getrocknet werden. Wie bei der Hohlkugeltechnologie muss nachträglich das EPS durch die thermische Entbinderung entfernt und das Metallpulverskelett zu dichten Zellwänden gesintert werden. Für die Umsetzung dieser Idee ist es erforderlich, ein geeignetes Bindersystem für die Metallpulver-Binder-Beschichtung zu entwickeln, welches die Formänderung während des Schäumprozess unbeschädigt übersteht, sowie den Schäumprozess entsprechend anzupassen. Damit wäre die Möglichkeit gegeben, einen geschlossenzelligen metallischen Werkstoff herzustellen. Er würde die Vorteile einer geschlossenzelligen Struktur und die Materialvielfalt der pulvermetallurgischen Technologie der Hohlkugelherstellung (insbesondere in Bezug auf Stähle und andere höherschmelzende Werkstoffe) miteinander verbinden. In Vorversuchen wurde bereits gezeigt, dass die der Arbeit zugrunde liegenden Ideen realisierbar sind. Mit der vorliegenden Arbeit wird jedoch erstmals die vollständige Kette der technologischen Schritte hinsichtlich der relevanten Einflussgrößen untersucht, wobei großen Wert auf eine Umsetzbarkeit auch im industriellen Maßstab gelegt wird. Für den praktischen Einsatz des geschlossenzelligen Metallschaums sind seine mechanischen Kennwerte, sowie die sie beeinflussenden Herstellungsparameter von grundlegender Bedeutung. Dazu soll die Charakterisierung der zellularen Struktur und des Gefüges des Zellwandmaterials erfolgen. Hauptsächlich soll das Verformungsverhalten mit Hilfe von Druckversuchen untersucht werden. Die Festigkeitskennwerte, das Energieabsorptionsvermögen und die Steifigkeit des zellularen Werkstoffes sind weitere zu untersuchende Kenngrößen. Anhand der Ergebnisse wird eine Einordnung gegenüber dem Stand der Technik der Metallschäume vorgenommen.
16

Herstellung und Eigenschaften neuartiger, metallischer Polyederzellstrukturen

Reinfried, Matthias 11 May 2010 (has links)
Das Ziel der vorliegenden Arbeit ist es, die technologischen Schritte für die Herstellung eines geschlossenzelligen metallischen Werkstoffs aus Stahl zu untersuchen. Das Eigenschaftsbild dieses neuartigen zellular aufgebauten Werkstoffs soll umfassend beschrieben und mit bereits existierenden Werkstoffkonzepten verglichen werden. Die Grundidee für die Herstellung einer geschlossenzelligen Struktur bildet die Kombination der Technologie zur Herstellung von metallischen Hohlkugeln und Hohlkugelstrukturen mit dem Herstellungsprozesses für Partikelschäume aus expandierbarem Polystyrol (EPS). Dazu ist es notwendig zunächst Grünkugeln herzustellen, wie bei der Technologie der Hohlkugeln, wobei jedoch ein treibmittelhaltiges EPS zum Einsatz kommt, das mit einer Beschichtung aus Metallpulver und Binder versehen wird. Anschließend sollen die Grünkugeln in einer geschlossenen Form zum expandieren gebracht werden. Dazu wird, wie bei der Partikelschaumtechnologie für Teile aus expandierbarem Polystyrol (EPS), Wasserdampf verwendet. Der durch den Temperaturanstieg und das Treibmittel der EPS-Partikel in den Grünkugeln entstehende Innendruck führt zum Aufschäumen und zur Expansion jeder Grünkugel. In der Folge ändert jede Kugel ihre Form so lange, bis sie mit allen Nachbarn einen flächigen, stabilen Kontakt bildet. Der auf diesem Weg erzeugte Grünkörper kann dann entformt und getrocknet werden. Wie bei der Hohlkugeltechnologie muss nachträglich das EPS durch die thermische Entbinderung entfernt und das Metallpulverskelett zu dichten Zellwänden gesintert werden. Für die Umsetzung dieser Idee ist es erforderlich, ein geeignetes Bindersystem für die Metallpulver-Binder-Beschichtung zu entwickeln, welches die Formänderung während des Schäumprozess unbeschädigt übersteht, sowie den Schäumprozess entsprechend anzupassen. Damit wäre die Möglichkeit gegeben, einen geschlossenzelligen metallischen Werkstoff herzustellen. Er würde die Vorteile einer geschlossenzelligen Struktur und die Materialvielfalt der pulvermetallurgischen Technologie der Hohlkugelherstellung (insbesondere in Bezug auf Stähle und andere höherschmelzende Werkstoffe) miteinander verbinden. In Vorversuchen wurde bereits gezeigt, dass die der Arbeit zugrunde liegenden Ideen realisierbar sind. Mit der vorliegenden Arbeit wird jedoch erstmals die vollständige Kette der technologischen Schritte hinsichtlich der relevanten Einflussgrößen untersucht, wobei großen Wert auf eine Umsetzbarkeit auch im industriellen Maßstab gelegt wird. Für den praktischen Einsatz des geschlossenzelligen Metallschaums sind seine mechanischen Kennwerte, sowie die sie beeinflussenden Herstellungsparameter von grundlegender Bedeutung. Dazu soll die Charakterisierung der zellularen Struktur und des Gefüges des Zellwandmaterials erfolgen. Hauptsächlich soll das Verformungsverhalten mit Hilfe von Druckversuchen untersucht werden. Die Festigkeitskennwerte, das Energieabsorptionsvermögen und die Steifigkeit des zellularen Werkstoffes sind weitere zu untersuchende Kenngrößen. Anhand der Ergebnisse wird eine Einordnung gegenüber dem Stand der Technik der Metallschäume vorgenommen.:1 Ziel der Arbeit 1 2 Einführung – zellulare Materialien 3 2.1 Herstellung zellularer metallischer Werkstoffe 4 2.2 Pulvermetallurgische Verfahren zur Herstellung von Schäumen aus höherschmelzenden Werkstoffen (Stahl, Titan, …) 8 2.2.1 Pressen von Metallpulver-Treibmittel-Mischungen 8 2.2.2 Pressen von Metallpulver-Platzhalter-Mischungen 9 2.2.3 Schaumherstellung mit Metallpulver-Polymer-Mischungen 9 2.2.4 Beschichtung von Trägerstrukturen 10 2.2.5 Technologie zur Herstellung von Hohlkugelstrukturen 11 2.3 Eigenschaften zellularer metallischer Werkstoffe 13 2.4 Die Struktur zellularer metallischer Werkstoffe 14 2.4.1 Mikrostruktur 15 2.4.2 Mesostruktur 16 2.4.3 Makrostruktur 16 2.5 Mechanische Eigenschaften 17 2.5.1 Einleitung 17 2.5.2 Mechanische Prüfung 19 2.5.3 Verformung und Versagen 20 2.5.4 E-Modul und Steifigkeit 22 2.5.4.1 Theoretische Betrachtung 22 2.5.4.2 Praktische Bestimmung der Steifigkeit 24 2.5.5 Einfluss der Strukturebenen auf das mechanische Verhalten 25 2.5.5.1 Makroskopische Parameter 26 2.5.5.2 Einfluss der mikroskopischen Parameter 27 2.5.5.3 Einfluss der mesoskopischen Parameter 28 2.6 Zusammenfassung 31 3 Konzept zur Herstellung eines geschlossenzelligen metallischen Werkstoffs 33 4 Nachweis der Herstellbarkeit einer geschlossenzelligen Struktur 37 4.1 Experimentelle Arbeiten 37 4.1.1 Verwendete Materialien 37 4.1.2 Beschichtung 38 4.1.3 Formgebung - Ausschäumen 38 4.1.4 Wärmebehandlung 39 4.2 Ergebnisse 39 4.3 Zusammenfassung 40 5 Formschäumen 43 5.1 Formteilherstellung aus expandierbarem Polystyrol (EPS) 43 5.2 Überlegungen zum Formschäumen von Grünkugeln 44 5.3 Anforderungen an das Bindersystem beim Formschäumen 44 5.4 Entwicklung des Versuchsstandes 46 5.4.1 Konstruktion des Formwerkzeuges 46 5.4.2 Dampfbereitstellung 48 6 Verfahrensexperimente 49 6.1 Ausgangsmaterialien 49 6.1.1 Metallpulver 49 6.1.2 Expandierbares Polystyrol (EPS) 49 6.1.3 Binder 50 6.2 Grünkugelherstellung 51 6.2.1 Substrataufbereitung 51 6.2.2 Suspensionen 52 6.2.3 Grünkugelherstellung – Beschichtung des EPS 53 6.2.4 Charakterisierung der EPS-Partikel und Grünkugeln 54 6.3 Formschäumen 55 6.3.1 Formschäumen von unbeschichtetem EPS 55 6.3.1.1 Schäumen mit dem Dampfkessel 55 6.3.1.2 Schäumen mit dem Dampferzeuger 56 6.3.1.3 Schäumkraftmessung an EPS- Formkörpern 56 6.3.2 Formkörperherstellung – Formschäumen mit Grünkugeln 57 6.3.2.1 Formschäumen mit Dampfkessel 58 6.3.2.2 Formschäumen mit Dampferzeuger 58 6.4 Untersuchungen an ausgewählten Metallpulver-Binder-Folien 58 6.4.1 Herstellen der Folien durch das Foliengießen 58 6.4.2 Zugversuche an Folien 59 7 Ergebnisse der Formgebung und Grünkörperherstellung 61 7.1 Formschäumen mit EPS-Partikeln 61 7.1.1 Vorgeschäumtes EPS 61 7.1.2 Formkörper aus unbeschichtetem EPS 62 7.1.3 Schäumkraftmessung an EPS-Formkörpern 63 7.1.4 Anzahl der Kontaktflächen geschäumter Partikel 65 7.2 Formschäumen mit Grünkugeln 67 7.2.1 Grünkugelherstellung 67 7.2.2 Formkörperherstellung 71 7.2.2.1 Beurteilung der Metallpulver-Binder-Schichten 74 7.2.2.2 Schäumen mit Dampfkessel 75 7.2.2.3 Schäumen mit Dampferzeuger 76 7.2.2.4 Vergleich der Metallpulver-Binder-Schichten 76 7.2.3 Formkörperherstellung mit Dampferzeuger 77 7.2.3.1 Einfluss des verwendeten Dampfdrucks 78 7.2.3.2 Einfluss von Schäumzeit und Bedampfungszeit 80 7.2.3.3 Schäumkraftmessung bei der Grünkörperherstellung 82 7.3 Metallpulver-Binder-Folien (Grünfolien) 83 7.3.1 Dicke und Dichte der Grünfolien 83 7.3.2 Mechanische Eigenschaften der Folien 83 7.3.2.1 Versuchsergebnisse der „trockenen“ Grünfolien 84 7.3.2.2 Versuchsergebnisse der „nassen“ Grünfolien 84 8 Diskussion der Herstellungsuntersuchungen 87 8.1 Formschäumen 87 8.1.1 Einfluss der Metallpulver-Binder-Schicht auf den Schäumvorgang 87 8.1.2 Modifikation der Binderzusammensetzung 87 8.1.3 Schäumkraftmessungen 88 8.2 Zusammenfassung des Formschäumprozesses 89 8.3 Theoretische Betrachtungen zur Bildung der polyederförmigen Zellen 90 8.3.1 Grundlegende Annahmen 90 8.3.2 Tangentialspannung der Kugelschicht 92 8.3.3 Vergleich zu den Ergebnissen der Folienzugversuche 92 8.3.4 Geometrische Verhältnisse spezieller Polyeder und ihrer Inkugel 93 8.3.5 Vergleich zu den Ergebnissen der Folienzugversuche 97 8.4 Zusammenfassung der Herstellungstechnologie von Grünformteilen 98 9 Untersuchung der mechanischen Eigenschaften 103 9.1 Herstellen der Proben 103 9.2 Wärmebehandlung 103 9.2.1 Probenvorbereitung 103 9.2.2 Entbinderung 104 9.2.3 Sintern 104 9.3 Methoden der Charakterisierung 105 9.4 Druckversuche an gesinterten Formkörpern 107 9.4.1 Probenvorbereitung für den Druckversuch 107 9.4.2 Durchführung der Druckversuche 107 9.4.3 Auswertung der Druckversuche 109 9.5 Zugversuche an Folien 110 10 Ergebnisse der mechanischen Prüfungen 111 10.1 Wärmebehandlung 111 10.1.1 Ergebnisse der Sinterung 111 10.1.2 Kohlenstoffgehalte nach der Entbinderung und Sinterung 112 10.2 Metallographie 113 10.3 Ergebnisse der Druckversuche 117 10.3.1 Druckspannung und Stauchung 117 10.3.2 Darstellung der Verformung 118 10.3.3 Probenfestigkeit, Probensteifigkeit und Energieabsorption 119 10.4 Ergebnisse der Folienprüfung 123 10.4.1 Sinterergebnisse (Wärmebehandlung und Metallographie) 123 10.4.2 Ergebnisse der Zugversuche 124 11 Diskussion der mechanischen Prüfungen 125 11.1 Einfluss des Gefüges auf die mechanischen Eigenschaften 126 11.2 Einfluss von Herstellungsparametern auf die mechanischen Eigenschaften 127 11.2.1 Primäre Herstellungsparameter 127 11.2.2 Sekundäre Herstellungsparameter 129 11.2.3 Einfluss der Zwickelform auf die lokale Spannungsverteilung im Zwickelbereich 136 11.2.4 Einfluss der Probenfläche 140 11.3 Elastisches und plastisches Deformationsverhalten der Proben im Druckversuch 142 11.3.1 Elastischer Bereich 144 11.3.2 Elastisch-plastischer Übergangsbereich 149 11.3.3 Plateaubereich 151 11.3.4 Lokale Maxima im Plateaubereich der Druckspannung-Stauchung-Kurve 153 11.4 Zusammenfassung zu den mechanischen Eigenschaften und Einordnung der Ergebnisse 155 12 Zusammenfassung und Ausblick 161 12.1 Zusammenfassung 161 12.2 Ausblick 166 13 Literaturverzeichnis 171 14 Anhang 185 14.1 Abbildungen und Tabellen 185 14.2 Verzeichnis der Abbildungen 200 14.3 Verzeichnis der Tabellen 208 14.4 Verzeichnis der Abkürzungen und Symbole 211 Danksagung 217 Versicherung 219 Lebenslauf 221

Page generated in 0.0603 seconds