Spelling suggestions: "subject:"etnomathematics."" "subject:"ethnomathematics.""
1 |
A Study in Metamathematics: The Relation Between Proof and ConvictionHackett, John J. January 1963 (has links)
No description available.
|
2 |
Computable metamathematics and its application to game theoryPauly, Arno Matthias January 2012 (has links)
No description available.
|
3 |
Abstract digital computers and degrees of unsolvability.Horgan, Joseph Robert January 1972 (has links)
No description available.
|
4 |
Construction of elementary equivalent models for relational structuresLenihan, William J. (William James) January 1968 (has links)
No description available.
|
5 |
Construction of elementary equivalent models for relational structuresLenihan, William J. (William James) January 1968 (has links)
No description available.
|
6 |
Training of metamnemonic awareness in mentally retarded childrenLai Ng, Man-yee, Jasmine. January 1983 (has links)
published_or_final_version / abstract / toc / Educational Psychology / Master / Master of Social Sciences
|
7 |
Expressing consistency : Gödel's second imcompleteness theorem and intensionality in metamathematicsAuerbach, David Daniel January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Linguistics and Philosophy. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND HUMANITIES. / Bibliography: leaves 131-132. / by David D. Auerbach. / Ph.D.
|
8 |
On formally undecidable propositions of Zermelo-Fraenkel set theorySt. John, Gavin 30 May 2013 (has links)
No description available.
|
9 |
Borel Determinacy and MetamathematicsBryant, Ross 12 1900 (has links)
Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.
|
10 |
L’aporie du passage : Zénon d’Élée et le principe d’achevabilité / The aporia of passage : Zeno of Elea and the principle of achievabilitySeban, Pierrot 13 December 2018 (has links)
Nous reconsidérons les arguments de Zénon d’Élée dits de l’« Achille » et de la « Dichotomie », en réunissant les perspectives de plusieurs disciplines, dont l’histoire de la philosophie ancienne, l’histoire et la philosophie des mathématiques, et la philosophie du temps. Nous soutenons que les réponses ordinairement données à ces arguments au XXe siècle, d’après lesquelles la mathématique moderne nous donne les moyens de dissoudre l’aporie, sont erronées et s’accompagnent d’une vue faussée sur le problème originel, notamment sur le concept d’infini qu’il implique. Dans la première partie, nous étudions les sources sur Zénon et sur son contexte de réception, pour établir que l’infini est chez lui second par rapport à l’idée d’inachevabilité, qui découle d’un mode de raisonnement nouveau qu’on peut nommer « itératif indéfini ». Nous examinons comment Zénon a utilisé ce raisonnement dans l’élaboration d’apories dialectiques, et comment l’ensemble des systèmes antiques étaient susceptibles de résoudre ces dernières. Dans la seconde partie, nous défendons l’aporie zénonienne du mouvement. Nous montrons qu’elle repose sur un principe que nous nommons « principe d’achevabilité », lui-même ancré dans notre intuition temporelle du passage. À travers la considération de la littérature sur les « supertasks », des problèmes concernant la réalité et la nature du temps, des différents concepts d’infini, et de la réflexion métamathématique, nous montrons à la fois pourquoi les théories de l’infini mathématique sont, de fait, la seule raison conduisant à rejeter le principe d’achevabilité, et pourquoi elles ne sont pas, de droit, en mesure de justifier ce rejet. / We reconsider Zeno of Elea’s arguments known as “Achilles” and the “Dichotomy”, bringing together perspectives from several disciplines, including the history of ancient philosophy, the history and philosophy of mathematics and the philosophy of time. We contend that the usual contemporary answers to these arguments – according to which modern mathematics allow us to dissolve the aporia – are wrong, and carry a false view of the original problem, especially of the concept of infinity it implies. In the first part of the dissertation, we study the sources relevant to Zeno and his arguments’ reception context, in order to establish that Zeno’s infinite is dependant upon an idea of unachievability, acquired through to a new mode of reasoning that we call “indefinite iterative”. We examine the ways Zeno used this mode of reasoning in order to design dialectical aporias, and how ancient philosophical systems were capable of solving them. In the second part, we vindicate Zeno’s aporia of motion. We show that it rests on what we call “the achievability principle”, that itself is anchored in our intuition of passage. Through the consideration of problems relevant to so-called ‘supertasks’, to the reality and the nature of time, to the notion of infinity and to the metamathematical debate, we show, at the same time, how mathematical theories of the infinite are the only de facto reason to deny the achievability principle, and how they cannot, de jure, justify such a denial.
|
Page generated in 0.0887 seconds