Spelling suggestions: "subject:"metamorphic""
61 |
Metamorphism in the Prince Albert Group, Churchill Province, District of Keewatin, N.W.T.Wolff, John 04 1900 (has links)
<p> A sequence of metasedimentary rocks comprising the Prince Albert
Group, within and to the southwest of the Ellice Hills, District of
Keewatin, N.W.T., was studied. Petrographic examination of the four
major facies present -- quartzites, greywacke-paragneisses, metaultrabasics
and iron formation was carried out and geochemical whole
rock data was obtained using X.R.F. methods. </p> <p> Metamorphism occurred during the Hudsonian orogeny and came in
three distinct pulses. These pulses are evident in thin section. The
first pulse is characterized by the fonnation of garnet poikiloblasts
and a biotite foliation; the second by a stronger biotite and hornblende foliation accompanied by quartz and muscovite porphyroblasts, and the
third pulse is characterized by the growth of fibrolite needles. The
last pulse of metamorphism shows that fibrolite and orthoclase formed
from the dehydration of muscovite in the presence of quartz. Thus, a
pressure and temperature regime for this event can be inferred from
published experimental studies. These indicate that PM2O ranged from
2.0 to 3.5 Kbars and that temperature ranged from 640° ± l0°C to
670° ± l0°C. Previous pulses may have had higher pressure ranges but
certainly lower temperature ranges prevailed. The present metamorphic
grade of the Prince Albert Group displays mineral assemblages indicative
of the Sillimanite-orthoclase-almandine Subfacies of the Almandineamphibolite
Facies as defined by Winkler (1967). </p> <p> Structural deformation is closely associated with metamorphism.
At least three periods of deformation have occurred. The first is evident
in thin section by the s1 foliation and parallel trains of sialic material
in garnet poikiloblasts. The second period of deformation caused the
rotation of the above garnets, plus formation of the F2 isoclinal folds,
s2 biotite foliation, crenulation of the s1 foliation and the formation
of muscovite-quartz porphyroblasts. The third period of deformation is
responsible for the F3 folding, warping of the F2 axial trace and the
antisotropic growth of fibrolite.</p> / Thesis / Bachelor of Science (BSc)
|
62 |
EMPA dating of Monazite from high grade metamorphic rocks along the Highland- Vijayan boundary zone, Sri LankaWidanagamage, Inoka Hasanthi 22 November 2011 (has links)
No description available.
|
63 |
Vorticity of Flow, Deformation Temperatures, and Strain Symmetry of the Moine Thrust Zone, NW Scotland: Constraining the Kinematic and Thermal Evolution of a Collisional Orogenic SystemThigpen, James Ryan 16 July 2009 (has links)
Examination of deformation temperature, flow vorticity, and strain symmetry in the Loch Eriboll, Loch More, and Assynt regions of the Moine thrust zone (MTZ) in northwest Scotland allows quantitative kinematic and thermal characterization of a crustal-scale shear zone at the base of the Scandian (435-425 Ma) orogenic wedge. Quartz crystal fabrics, kinematic vorticity (Wm), and strain estimates from the ductile thrust sheets in this region are used to determine how pure and simple shear components of deformation are partitioned, and indicate that these processes may be thermally, structurally, and lithologically dependent. Vorticity analysis of samples collected along strike in the MTZ and overlying Moine nappe indicate that Scandian thrusting and deformation involved a considerable pure shear component. Integrated strain and vorticity estimates indicate that significant sub-vertical foliation normal shortening has occurred as nappe stacking progressed. Along strike Wm variation could not be directly correlated with changes in footwall structural architecture, lithology, deformation temperatures, or structural depth and are thus interpreted to reflect local variability driven by a complex interplay of these and possibly other factors. Quartz c- and a-axis fabrics indicate that deformation in the footwall of the Moine thrust involved plane strain to general flattening strain with only a minor rotational (non-coaxial) component. In contrast, deformation in the Moine nappe was strongly non-coaxial, as indicated by asymmetric single girdle c-axis fabrics. Quartz c-axis opening angles and microstructures suggest that deformation temperatures increase from north to south and from structurally lower to structurally higher levels in the footwall to the Moine thrust. Vertical ductile thinning must be accommodated by either volume loss or extrusion of material towards the synorogenic topographic surface. Extrusion towards the synorogenic topographic surface implies a causal link between upper and lower crustal processes, with significant implications for the kinematic, geometric, and kinetic (deformation rates) evolution of the Scandian orogenic wedge. New thermobarometric and deformation temperature estimates are combined with structural and kinematic investigations to characterize the thermal structure of the Moine, Ben Hope, and related nappes. At the leading edge of the Moine thrust, subhedral garnets with prograde compositional growth zoning yield peak temperatures (grt-bio) of 440-492 °C at 4.5-6.0 kbars from Creagan Meall Horn to northern Assynt. Three samples collected at similar structural positions along the leading edge of the Moine nappe yield deformation temperatures of 420-460 °C, as determined from quartz c-axis opening angles. At the structurally highest position in the Moine nappe, garnet prograde compositional zoning profiles are preserved and samples yields P-T estimates of 565-571 °C (grt-bio) and 4.5-5.1 kbar (GRAIL barometer, minimum pressure due to absence of Al2SiO5 phase). Quartz c-axis fabrics of samples collected at similar structural positions yield deformation temperature estimates of 490-565 °C. In the structurally higher Ben Hope nappe, two phases of prograde compositional growth zoning are preserved in garnet bearing amphibolite near Portvasgo. The later outer garnet rim records P-T conditions of 655-672 °C at 3.9-5.1 kbars. The inverted metamorphic sequence from the Moine to the Naver thrust is mostly intact and is interpreted to be Scandian (435-420 Ma) in age. It is likely that the formation of this inverted sequence is due to a combination of progressive accretion of successively lower grade thrust sheets onto the base of the Scandian wedge and heating of the Moine and Ben Hope nappes from above by the relatively higher temperature migmatites of the Naver thrust. Vertical ductile thinning, in conjunction with erosion and normal faulting, likely led to rapid exhumation of the Scandian nappe pile and in turn preserved the inverted metamorphic sequence. / Ph. D.
|
64 |
Experimental study of the effect of H2O-CO2-NaCl fluid immiscibility on the reaction calcite + quartz + rutile = sphene + CO2 at 2 KBARDoyle, John Andrew January 1989 (has links)
The minimum T-XCO₂ location of the reaction boundary calcite + quartz + rutile = sphene + CO₂ has been experimentally determined in H₂0-CO₂-NaCl fluids at 2 kbar. Extent and direction of reaction were monitored by the CO₂ weight change method using natural materials. All bulk compositions contain 23 wt. % NaCI, relative to NaCl-H₂0. Synthetic fluid inclusions trapped at the T-XCO₂ conditions of several points along the curve suggest unmixing of the fluid phase, as evidenced by coexisting CO₂ vapor-rich and aqueous, halite-bearing inclusions. Results from 450-520 °C are listed below. / Master of Science
|
65 |
Advances in Subduction Zone ProcessesGorce, Jennifer Shannon 29 June 2018 (has links)
Subduction zones are an important recycling center at which material from the exterior of the Earth is transported to Earth's interior. The processes that occur along subduction zones have important implications for elemental cycles, geodynamics, and material mass transport. The cold, dense subducting lithosphere experiences prograde metamorphism as it transitions from blueschist to eclogite facies resulting in the breakdown of volatile-bearing minerals and producing anhydrous minerals and a free fluid phase. Previous works attempting to understand the evolution of subducted lithologies have provided a firm foundation in which to apply field work, computational thermodynamic modeling, and geochronological techniques in order to better constraint the Pressure-Temperature-time (P-T-t) paths and dehydration of subducted lithologies.
This dissertation; 1.) Explores novel approaches to modeling and predicting fluid/rock interactions during deep (>60km) subduction, and 2.) Questions what the calculated P-T-t path from eclogite lithologies reveals about early exhumation of subducted terrains. The second chapter focuses on how externally-derived hydrous fluids can decarbonate subducted basalt, liberate carbon and transfer it to the overlying mantle wedge, where it can be incorporated into melt that forms volcanic arcs. Here, the thermodynamic response to the infiltration of external fluids assuming open system, pervasive fluid flow, is quantified. It was determined that while hotter subduction zones have more favorable P-T conditions in which to facilitate decarbonation than colder subduction, the extent of decarbonation is largely dependent on the availability of fluid from the dehydration of underlying serpentine. The third chapter constrains the P-T-t paths of subducted lithologies from Syros, Greece using a combination of thermodynamic modeling, 147Sm/144Nd garnet geochronology, and quartz-in-garnet geobarometry. This provides insight into early exhumation of subducted lithologies, and allows for the exploration of assumptions made in thermodynamic modeling and in quartz-in-garnet geobarometry. Results suggest that garnet grew over a 4.31my period from 45.71±0.98Ma to 41.4±1.7Ma, during initial exhumation from maximum subducted depths. Calculated exhumation rates are a relatively rapid, 0.4-1.7 cm/yr. Because field relationships on Syros suggest the width of the subduction channel along the slab/mantle interface is not adequate to facilitate buoyancy-driven ascension of metabasic blocks, initiation of southward retreat of the Hellenic Subduction Zone and subsequent slab rollback is proposed to have played an important role in the exhumation of subducted lithologies. The final chapter investigates the compositional controls on the P-T conditions at which dehydration due to the breakdown of hydrous minerals occur during subduction (blueschist/eclogite boundary), and the implications they have on the rheology, seismicity, and densification of the down going slab. Total Alkali Silica (TAS) diagrams reveal that eclogites are more alkali rich, implying that initial alteration of the seafloor controls the mineral evolution of subducted basalt in many cases. / Ph. D. / Subduction zones are an important ‘recycling center’ at which material from the exterior of the Earth is transported to Earth’s interior. The processes that occur along subduction zones have important implications for elemental cycles, geodynamics, and material mass transport. The cold, dense rock that gets heated and deeply buried (high pressure metamorphism) releases fluid as water-bearing minerals breakdown. Previous works attempting to understand the history of subducted rocks have provided a firm foundation in which to apply field work, modeling, and dating techniques in order to better constraint the depths and temperatures a rock experienced, and over what time interval metamorphism and subsequent fluid loss occurred.
This dissertation; 1.) Explores novel approaches in modeling and predicting fluid/rock interactions during deep (>60km) subduction, and 2.) Asks what does the calculated Pressure-Temperature-time (P-T-t) path from eclogite lithologies reveal about early exhumation of subducted terrains. The second chapter focuses how water-rich fluids can infiltrate a subducted rock and liberate carbon, which migrates upwards and can be incorporated into melt that forms volcanic arcs. It was determined that while the potential to release more carbon is higher in hotter subduction zones, the extent of decarbonation is largely dependent on the availability of fluid from the dehydration of the water bearing mineral., serpentine. The third chapter constrains the P-T-t paths of subducted lithologies from Syros, Greece using a combination of techniques, which not only provides insight into the return of subducted rocks back to the surface, but allows for the exploration of assumptions made in various analytical methodologies. Results suggest that garnet grew over a span from 45.71±0.98Ma to 41.4±1.7Ma, as the rock moved at a rate of 0.4–1.7 cm/yr to travel approximately 18km back to the surface, which suggests that a large-scale tectonic mechanism is needed to facilitate the rock’s return journey. The final chapter investigates the compositional controls on the P-T conditions in which the breakdown of hydrous minerals, and subsequent fluid loss, occur during subduction (blueschist/eclogite boundary), and the implication they have on the physical properties and behavior of the subducting rock. Chemical data reveal that subducted rocks that dehydrate earlier are more enrich in K and Na, implying that initial alteration of the seafloor controls the mineral evolution of subducted basalt.
|
66 |
Textural and Chemical Relations Among Spinel-Sapphirine-Garnet-Orthopyroxene, Salt Hill Emery Mine, Cortlandt Complex, N.Y.Johnson, Amy Mechel 08 October 1998 (has links)
Very high temperature (>900 °C) contact metamorphism and metasomatism of aluminous schist xenoliths in the mafic to ultramafic Cortlandt Complex, New York, resulted in formation of bodies of unusual Fe- and Al-oxide-rich rock called emery. During contact heating, disequilibrium thermal decomposition of the protolith schists in one closely examined xenolith produced two end-member materials: a quartzo-feldspathic water-undersaturated melt which partitioned much of the silica and calcium and all of the alkalis of the original schist; and a highly aluminous fine-grained emery residuum which contained spinel, magnetite, ilmenohematite, sillimanite, and sporadically corundum. During cooling, melt within the xenoliths was injected as cm-scale veinlets into the silica-poor solid residuum. Local increase in silica activity resulted in progressive silication reactions of spinel-rich residuum to several silicates. A simple model of progressive silication would require that reactions should occur from lower to higher silica content of product silicates in stages, e.g., spinel – sapphirine (Si/O=0.10), sapphirine – garnet (0.25), garnet – orthopyroxene (0.28), rather than directly from spinel to higher-silica minerals which would overstep intermediate reaction steps. However, observed reaction textures indicate the latter more complex behavior in which spinel may have reaction rims of, or occur as inclusions within, any of the three silicate minerals.
Statistical analysis of several samples has shown the mode to be the spinel-orthopyroxene reaction rim boundary although orthopyroxene is the highest-silica product mineral, based on Si/O ratio. Chi-square test results are significant and show that the textural relations observed among spinel, sapphirine, garnet, and orthopyroxene are dependent. Increased silica activity therefore cannot be the only factor controlling the reaction sequence.
Microprobe data has been collected in an attempt to correlate mineral compositions with the different textural occurrences. The effects of local equilibria appear to be the dominant factors in the overstepping of sequential reactions. Qualitative activity-activity diagrams proved useful for examining the effects of bulk composition on the relative stabilities of spinel and the three silicates, including variations in Fe/(Fe+Mg), bulk Mn and Zn contents, and minor local variation in oxygen fugacity. Matrix spinel compositions (i.e., those not modified by reaction to silicates) fall into two groups: a more magnesian one containing spinels with average Fe/(Fe+Mg) (Fe#) of 0.49 and a less magnesian one, average Fe# of 0.67. With regard to this bulk compositional effect, the more magnesian composition should reduce garnet stability due to the strong fractionation of Fe into garnet, thus favoring the reaction of spinel to orthopyroxene within silica-rich areas. In more aluminous areas, spinel will react to form sapphirine, then garnet, then possibly orthopyroxene. A less magnesian composition would expand the stability of garnet at the expense of sapphirine and, to a lesser extent, orthopyroxene.
Zinc has a subtle effect on mineral stabilities. Because Zn is strongly partitioned into spinel, higher zinc contents (concentrations in some spinels are as high as 14.9 mol% gahnite) may expand the stability of that mineral considerably. Consequently, spinel stability may increase relative to the three silicates, but this may be quite variable due to variable reaction stoichiometry and different reaction-boundary slopes in the activity-activity diagram. In general, spinels with the highest Zn content occur next to orthopyroxene (ave. 4.9 mol% gahnite in spinels) for which the stability appears to be only slightly affected by this increase in Zn. The greatest decrease in silicate stability is observed in sapphirine. Spinels adjacent to sapphirine contain no more than 1.3 mol% gahnite.
The effects of manganese and oxygen fugacity were also examined. Mn increases the stability of garnet due to strong partitioning of Mn into this mineral. It can be inferred using statistical and chemical data that this has some bearing on textural relations in garnet-bearing samples, but the lack of obvious Mn fractionation by other minerals examined makes it impossible to interpret the effects of Mn in the garnet-free samples. Calculated ferric-ferrous ratios in analyzed minerals were examined in an attempt to study the effect of oxygen fugacity on the stabilities of minerals. In the more magnesian compositions, which may correlate with slightly higher fO2 during reactions, spinels should react to form sapphirine, then possibly garnet or orthopyroxene with further silica activity increase. In lower-fO2 environments (perhaps those with higher bulk Fe#), spinel should react directly to form orthopyroxene. The coexistence of magnetite and ilmenohematite dictates T-fO2 conditions very nearly at those of the Hematite-Magnetite buffer. Minor fO2 variations that might have had an effect on silicate-forming reactions would only be recorded by small variations in magnetite and ilmenohematite solid solutions (ulvospinel and ilmenite contents, respectively). These data were not acquired in this study, however, so no definite conclusions could be made. / Master of Science
|
67 |
Metamorphism of the Wales Group and Moria Group on Prince of Wales and Dall Islands, southeastern AlaskaZumsteg, Cathy L., January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on December 28, 2007) Includes bibliographical references.
|
68 |
Tectonic setting and heat source of an ultrahigh-temperature metamorphic terrane constrained from prograde pressure-temperature-time-melting evolution: an example from Rundvågshetta, Lützow-Holm Complex, East Antarctica / 昇温期変成温度-圧力-時間-溶融履歴の構築による超高温変成岩体の形成テクトニクスおよび熱源の制約:東南極リュツォ・ホルム岩体ルンドボークスヘッタにおける例Suzuki, Kouta 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24430号 / 理博第4929号 / 新制||理||1704(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 河上 哲生, 教授 下林 典正, 教授 田上 高広 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
69 |
Age and Tectonic Evolution of the Amdo Basement: Implications for Development of the Tibetan Plateau and Gondwana PaleogeographyGuynn, Jerome January 2006 (has links)
The elucidation of the geologic processes that led to the creation of the Tibetan Plateau, a large area of thick crust and high elevation, is a fundamental question in geology. This study provides new data and insight on the geologic history of central Tibet in the Jurassic and Cretaceous, prior to the Indo-Asian collision, as well as the Gondwanan history of the Lhasa and Qiangtang terranes of the plateau. This investigation is centered on the Bangong suture zone near the town of Amdo and I present new geochronology, thermochronology, thermobarometry and structural data of the Amdo basement, an exposure of high-grade gneisses and intrusive granitoids. Using a range of thermochronometers, I show there were two periods of cooling, one in the Middle-Late Jurassic after high-grade metamorphism and a second in the Early Cretaceous. I attribute Middle-Late Jurassic metamorphism, magmatism, and initial cooling of the Amdo basement to arc related tectonism that resulted in tectonic or sedimentary burial of the magmatic arc. I propose that a second period of cooling, nonmarine, clastic sedimment deposition and thrust faulting in the Early Cretaceous is related to the Lhasa-Qiangtang collision. The thermochronology reveals limited denudation between the Cretaceous and the present, indicating the existence of thickened crust when India collided with Asia in the early Tertiary. U-Pb geochronology of the orthogneisses and detrital zircon geochronology of metasedimentary rocks suggests that the Lhasa and Qiangtang terrane were located farther west along Gondwanan's northern margin than most reconstructions depict.
|
70 |
The Relationship Between Magmatism and Deformation During the Acadian Orogeny: A Case Study from Eastern-Central VermontLagor, Samuel William 01 January 2016 (has links)
The Silurian-Devonian metasedimentary rocks of the Connecticut Valley-Gaspé trough (CVGT) were subjected to multiple deformational and metamorphic events during the Acadian orogeny in the Middle-Late Devonian. Plutons intruding the Devonian Waits River and Gile Mountain Formations have been considered post-tectonic, but microstructural studies of the intrusions and their metamorphic aureoles indicate some of these plutons intruded syntectonically. This study investigates the relationship between Acadian deformation and intrusion of the Knox Mountain pluton (KMP) of central Vermont. Structural and geochronological data were collected along a c. 15 km transect from the western limit of the CVGT, where the unconformable Richardson Memorial Contact coincides with the Dog River Fault Zone, into the margin of the KMP in the east. Field and microstructural observations indicate the KMP intruded syntectonically. Evidence for Acadian deformation post-dating intrusion includes folded and boudinaged granitic dikes at the margin of the KMP, and microstructures such as flame perthite, myrmekite, deformation twins, and textures associated with grain-boundary migration recrystallization in the granite. In the metamorphic aureole, biotite porphyroblasts overgrow S3, the earliest Acadian secondary foliation, and were deformed during S4 crenulation cleavage development. The KMP intruded at 377±5.2 Ma based on a U-Th-total Pb monazite crystallization age, which is concordant with the published age of the nearby Barre granite. The timing of S4 foliation development in the CVGT is constrained locally by 40Ar/39Ar geochronology at ~365 Ma, consistent with the microstructurally-inferred relative-age relationships. Plateau/weighted mean 40Ar/39Ar ages from across the transect and minimum ages from argon-loss profiles show a general trend of younging towards the east, suggesting these rocks have been affected by Alleghanian and Mesozoic deformation and exhumation.
|
Page generated in 0.0378 seconds