1 |
Influence of environmental parameters on methanogenesis in freshwater lakesWinfrey, Michael R. January 1978 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references.
|
2 |
Studies of methanogenesis in samples from landfillsHartz, Kenneth Eugene. January 1980 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 178-184).
|
3 |
Fundamental studies of methanation and related reactions in porous catalystsLim, Jin Yang January 2014 (has links)
No description available.
|
4 |
Selective CO methanation over Ru on carbon and titania based supportsKumi, David Ofori January 2016 (has links)
thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2016. / Selective CO methanation (SMET), as an alternative process for cleaning trace CO in reformate gas feed for fuel cell applications, has gained increasing attention recently. This is mostly due to the fact that the technique can circumvent the major setbacks experienced in the preferential oxidation (PROX) reaction of CO to CO2. The PROX technique is a more established process and has been extensively researched over the years. In this project, we have focused on studying Ru supported on carbon and titania based materials for the selective CO methanation reaction.
A rutile morphology in the form of a novel dandelion like structure was synthesized using TiCl4. The rutile dandelion like structure was composed on rutile nanorods which were radially arranged and they had fairly high surface area (61 m2g-1). Titania rutile was also synthesized by calcining anatase at 900 ℃ for 10 h. It was observed that the rutile grains had grown larger after the transformation from anatase to rutile and this was accompanied by a collapsed surface area (from 52 to 9 m2/g). The two rutile morphologies were employed as Ru catalyst supports and applied in both CO and selective CO methanation reactions. The dandelion like supported catalyst demonstrated higher catalytic performance compared to the thermally prepared rutile supports. This was attributed to the smaller Ru particles sizes which were found to be sinter resistant.
Small RuO2 nanoparticle sizes supported on carbon nanotubes (CNTs) were obtained by the use of a microwave polyol synthesis. Tuning the microwave temperature generated the different RuO2 sizes without changing the percentage loading or conventionally heat treating the catalyst. The CNTs were synthesized by a chemical vapour deposition (CVD) method using a Fe-Co/CaCO3 catalyst. The microwave polyol synthesized catalysts were compared to a wet impregnated catalyst. It was noted that the impregnated catalyst preparation method showed little control over the RuO2 particle size distribution. The catalysts were tested in both selective CO and CO methanation. The catalyst with smaller particle sizes, prepared using a short microwave induction time, performed better when compared to the other catalysts. It was also observed that all the catalysts promoted the undesired reverse water gas shift reaction for all the catalyst at temperatures above 260 ℃.
Abstract
The surface of the CNTs were altered by introducing pyridinic nitrogen in an in situ doping process to give nitrogen doped CNTs (N-CNTs). The doping was confirmed by TEM as the CNTs were seen to show bamboo compartments in the tubular CNT structure. A composite of CNT-TiO2 was prepared by a facile hydrothermal process and used to modify the CNTs. The TiO2 (anatase) coated CNTs were synthesized using titanium butoxide as anatase source. A solution containing CNTs and the TiO2 source was reacted in an autoclave. Images from TEM and SEM revealed partially coated anatase N-CNTs and CNTs. Both the doping and the coating of the CNTs resulted in an improved surface area. The coated samples showed significantly improved thermal stability which was attributed to the shielding effect of the TiO2. Raman analysis revealed that the N-CNTs had a high defect content compared to the CNTs. When these materials were employed as Ru catalyst supports for methanation reactions, the nitrogen doped CNTs demonstrated superior catalytic activity compared to the CNT supported catalyst. They both promoted the reverse water gas shift reactions. The NCNT-TiO2 and CNT-TiO2 catalysts showed higher activity and significantly retarded the reverse water gas shift reaction.
Mesoporous solid carbon spheres (CSs-H) synthesized via the hydrothermal route using sugar as carbon source was functionalized by acid treatment. The data were compared to an un-functionalized CSs-H used as a Ru catalyst support. Raman data suggested a high defect content for the functionalized spheres and the carbons had a slightly higher surface area when compared to the un-functionalized spheres. Two catalysts were prepared from the functionalized solid carbon spheres; a microwave irradiation prepared catalyst and a wet impregnation prepared catalyst. The microwave prepared catalyst, with slightly smaller Ru particles, performed slightly better in both CO and selective CO methanation reactions than the impregnated catalyst. In the CO2 only methanation reaction almost similar activity was obtained for both catalysts which implied the preparation method did not have much effect on the reaction. The un-functionalized supported catalyst performed poorly in both the reactions due to the poorly dispersed Ru nanoparticles which had sintered. Despite the poor performance, the catalyst did not promote the undesired RWGS reaction. This was attributed to the absence of oxygenated functional groups such as OH. / LG2017
|
5 |
Fuel processing catalysis for microchannel applicationsDagle, Robert Alexander, January 2005 (has links) (PDF)
Thesis (M.S. in chemical engineering)--Washington State University. / Includes bibliographical references.
|
6 |
Deactivation of nickel methanation catalysts induced by the decomposition of iron carbonylShen, Wei-Ming. January 1982 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 232-249).
|
7 |
Nanostructured Ru/TiO2 catalysts for CO2 methanation / Catalyseurs Ru/TiO2 Nanostructurés pour la Methanation du CO2Kim, Ara 11 January 2016 (has links)
L’hydrogénation du CO2 par voie catalytique hétérogène représente une stratégie pertinente pour atténuer les émissions. Cette thèse a pour but de contribuer à la compréhension des facteurs physico-chimiques qui déterminent l’activité de catalyseurs Ru/TiO2 en conditions douces (= 200 °C, 1 atm). Des nanoparticules de RuO2 de 2 nm sont utilisées comme précurseurs de la phase active de Ru métallique. Ces nanoparticules calibrées sont combinées avec plusieurs supports de TiO2 présentant diverses cristallinités, textures, stabilité et compositions, dans le but de comprendre les paramètres qui dictent l’activité des catalyseurs Ru/TiO2. Les interactions spécifiques entre le support de TiO2 et les nanoparticules de RuO2 sont mises en évidence via différentes techniques avancées incluant la tomographie et la microscopie électronique en transmission environnementale à pression atmosphérique. Il apparait que le paramètre clé conférant une activité catalytique élevée est la stabilisation épitaxiale de RuO2 sur le TiO2 rutile lors de l’étape d’activation qui précède la réduction vers la forme Ru métallique. / The hydrogenation of CO2 performed through heterogeneous catalysis is a pertinent strategy for mitigating CO2 emissions. This thesis aims to contribute to the understanding of the physico-chemical factors related to the catalytic performance of Ru/TiO2 catalysts at mild conditions (= 200 °C, 1 atm). Pre-synthesized 2 nm-RuO2 nanoparticles (NPs) are used to serve as precursors for active metallic Ru. These calibrated NPs are coupled with various tailor made TiO2 supports with different crystallinity, textural properties, stability and composition to understand parameters that dictate the activity of Ru/TiO2 catalysts. The specific RuO2-TiO2 interactions and RuO2 NPs migration phenomenon are demonstrated using various techniques including the state-of-the-art tomography and environmental transmission electron microscopy at atmospheric pressure. The important parameter for the better catalytic performance is found to be the epitaxial stabilization of RuO2 on rutile TiO2 prior to the formation of active Ru phase.
|
8 |
Studies of carbon dioxide methanation and related phenomena in porous catalystsHubble, Ross January 2019 (has links)
This Dissertation investigates the kinetics of CO2 methanation over nickel and cobalt catalysts. Methanation was studied for both Ni/γ-Al2O3 and Co/ZrO2 catalysts, which were synthesised using an incipient wetness impregnation technique and subsequently characterised using analyses based on gas adsorption, XRD, TPR and thermogravimetry. Separately a CO hydrogenation reaction, the Fischer-Tropsch process, was modelled numerically to examine the influence of mass transfer in practical, commercial pellets of catalyst. The kinetics of methanation was investigated for Ni/γ-Al2O3 over a wide range of reactant partial pressures using a gradientless, spinning-basket reactor operated in batch mode and in a laboratory-scale, continuous fixed-bed reactor. Langmuir-Hinshelwood kinetic models were developed to represent the observed kinetics in each reactor: these models were then compared. For the batch reactor, a rate expression based the dissociation of a chemisorbed CO intermediate being the rate-limiting step was found to be consistent with the experimental results. However, results from the fixed-bed suggested that the hydrogenation of an adsorbed C atom determined the rate of reaction. These differences in the kinetics on Ni/γ-Al2O3 between the fixed-bed and batch reactors suggest that a Langmuir approach using a single, rate-determining step may not be representative across all conversions. The rate over the Co/ZrO2 catalyst was characterised in the fixed-bed reactor over a range of reactant partial pressures at temperatures between 433 K and 503 K. The rate was observed to be dependent on hydrogen partial pressure and temperature, with the rate increasing with both. Previous research has reported a wide range of values of the apparent activation energy, with a study suggesting it was sensitive to pressure. Accordingly, the apparent activation energy was investigated for pressure sensitivity over a range of pressures between 5 and 15 barg: it was found to be constant. The values determined (~88-91±8 kJ/mol) were notably consistent with those reported for CO hydrogenation on cobalt. Kinetic schemes based on Langmuir-Hinshelwood and power law equations were evaluated, with the results best described by a reaction scheme based on the carbide pathway, with a rate-determining step of CH hydrogenation. A reaction-diffusion model of the Fischer-Tropsch process in a 2-D hollow cylinder was developed and analysed across a range of Thiele moduli and the extents of error in both effectiveness factor and selectivity were quantified relative to one-dimensional sphere and slab analogues. The errors between 2-D and 1-D analogues were found to be most significant between Thiele moduli of ~0.25 and ~3. Hollow cylinder effectiveness factors were bounded by those of sphere and slab above and below Thiele moduli of ~0.75 and ~1.15 respectively for the conditions examined, with the effectiveness factors exceeding those of both sphere and slab models between these moduli. A comparison of the hollow cylindrical pellets against spheres of equivalent volume demonstrated that hollow cylinders provided improved fixed-bed performance, with improved effectiveness factors and selectivities due to the lowered diffusion lengths of the hollow cylindrical geometry.
|
9 |
Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane / Optimisation and integration of catalytic porous structures into structured reactors for CO₂ conversion to methaneDanaci, Simge 19 October 2017 (has links)
Dans cette étude de doctorat, la technique de dépôt tridimensionnel de fibres (3DFD) a été appliquée pour développer et fabriquer des structures de support catalytique multi-canaux avancées. En utilisant cette technique, le matériau, la porosité, la forme et la taille des canaux et l'épaisseur des fibres peuvent être contrôlées. L'objectif de cette recherche est d'étudier les performances des supports structurés 3D conçus pour la méthanation du CO2 en termes d'activité, de sélectivité de stabilité et d’étudier l'impact des propriétés spécifiques introduites dans la conception structurale des supports. / In this doctoral study, the three dimensional fibre deposition (3DFD) technique has been applied to develop and manufacture advanced multi-channelled catalytic support structures. By using this technique, the material, the porosity, the shape and size of the channels and the thickness of the fibres can be controlled. The aim of this research is to investigate the possible benefits of 3D-designed structured supports for CO2 methanation in terms of activity, selectivity and stability and the impact of specific properties introduced in the structural design of the supports.
|
10 |
Valorisation énergétique de CO₂ via la méthanation par voie catalytique / Energy recovery of CO₂ through methanation process by catalyticallyElia, Nathalie 22 March 2019 (has links)
Cette étude concerne la valorisation du dioxyde de carbone par le procédé de méthanation. Elle vise à mettre au point des catalyseurs efficaces pour cette réaction. L'espèce active est le nickel métallique. Différents supports ont été étudiés tels que SiO₂, Al₂O₃, MgO, Y₂O₃ et CeO₂. Ces catalyseurs ont été préparés par la méthode d'imprégnation à sec. Dans un premier temps, les différents catalyseurs ont été caractérisés par différentes techniques physico-chimiques dont la Diffraction des Rayons X (DRX), la Réduction en Température Programmée (RTP-H₂), la Désorption en Température Programmée (DTP-CO₂), l'Adsorption d'Azote (méthode BET) et la Chimisorption d'Hydrogène. Dans un deuxième temps, les différents catalyseurs ainsi préparés ont été testés dans la réaction de méthanation du CO₂. Le catalyseur Ni/CeO₂ présente les meilleures performances catalytiques, parmi les systèmes étudiés. L'ajout du ruthénium améliore l'activité catalytique et la stabilité des catalyseurs. Le catalyseur Ru(0,5%)-Ni(5%)/CeO₂ est le plus performant, il présente une bonne activité catalytique et une bonne stabilité même pour une pression de 10 bar. Ceci le rend plus avantageux pour une application industrielle. / This study concerns the valorization of carbon dioxide by the methanation process. It aims to develop effectiv catalysts for this reaction. The active species is metallic nickel. Different supports have been studied such as SiO₂, Al₂O₃, MgO, Y₂O₃ and CeO₂. These catalysts were prepared by the dry impregnation method. Initially, the different catalysts were characterized by different physicochemical techniques including X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR-H₂), Temperature Programmed Desorption (TPD-CO₂), nitrogen adsorption (BET method) and hydrogen chemisorption. In a second step, the various catalysts thus prepared were tested in the CO₂ methanation reaction. The Ni/CeO₂ catalysts has the best catalytic performance, among the systems studied. The addition of ruthenium improves the catalytic activity and the stability of the catalysts. The catalyst Ru(0.5%)-Ni(5%)/CeO₂ is the most efficient, it has good catalytic activity and good stability even as a pressure of 10 bar. This makes it advantageous for an industrial application.
|
Page generated in 0.3558 seconds