• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of the water balance and nutrient dynamics of Mhlanga Estuary.

19 January 2011 (has links)
Waste water discharge into a temporary open/closed estuary (TOCE) system introduces two main concerns namely (1) the effects on the water balance of the system (quantity) and (2) the effects on the nutrient dynamics (water quality). Changes to mouth breaching patterns can severely impact the hydrological and ecological functioning of TOCEs, while excessive nutrient loading can lead to eutrophic conditions and algal blooms. Algal blooms occur when residence times during closed mouth conditions exceed the time scale for growth of the microalgal community. The aim of this study was to formulate a model in order to predict eutrophication events using the Mhlanga Estuary as a case study. The Mhlanga Estuary is situated approximately 19 km northeast of Durban and has a small catchment «100km2 ). The Phoenix and Mhlanga waste water treatment works (WWTW) collectively discharge approximately 20MI of treated effluent into the Mhlanga River per day. A simple daily-time-step water balance model was selected to model the hydrodynamics of the system. The model included various inputs and outputs of the system, residence time, storage, breaching water levels and time for mouth closure to occur. The result of the water balance model was a daily prediction of the mouth state and volume, and an indication of the breaching frequency. Observed mouth state data and measured water levels were used to test the model. In order to predict eutrophication events and trends at the Mhlanga Estuary, it was required that the conditions at which this would occur be investigated. This included the collection of samples (physico-chemical and chlorophyll-a) on a weekly basis for three months, a period that included three breaching events. Due to the complexity required in developing a nutrient dynamics model, a simpler approach was selected. The grey water index (GWI) was formulated in order to account for nutrient loadings into the estuary. WWTW discharge data were provided by eThekwini Municipality Water and Sanitation (EMWS). Initial results showed that under ideal conditions, an algal bloom would occur approximately fourteen days following re-closure of the Mhlanga mouth. The eutrophication index (E j ) was then formulated to account for both residence time and nutrient concentrations. The Ej at which eutrophic conditions can be expected was found to be about 50 %. It is important to note that this value for Ej is expected to be site specific and only accounts for the Mhlanga Estuary, but the concept can be generalized to other similar estuaries. Water levels simulated using the water balance model and observed mouth state data produced similar levels to those measured by DWAF. Following simulations of different flow scenarios (75% and 150% increase in WWTW discharges), it was found that an increase in capping flows resulted in more frequent breaching events and longer open mouth conditions. The risk of eutrophic conditions also increased with an increase in WWTW capping flows. Algal blooms are predicted to continue despite more frequent breaching events induced by an increase in capping flows. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2007.
2

Food, farming and subsistence agriculture: women's voices from u-Mhlanga village, Eastern Cape

Skota-Dayile, Nomvuyo January 2003 (has links)
Masters of Art / Using a qualitative feminist methodology grounded on post-modemist and postcolonial framework, this research represents an attempt to determine the factors influencing the farming and subsistence agriculture strategies used by rural women of U-Mhlanga village, in the Eastern Cape in the past and the present. It also explores what these women perceive to be their successes and highlights obstacles they encountered in the past and the present in farming. The Eastern Cape has one of the poorest populations of South Africa, and the poorest of these are women. Despite access to land, people are going hungry. This study explores this rural poverty that is feminized and goes on to highlight the social, political and economic issues related to ability or inability to utilize the resources that are accessible. The most prominent problem highlighted by these women goes back to colonial and apartheid times where discrimination in terms of race was used as a determining factor to accessing resources, and how these continue to play out today. However, despite the obstacles, my informants still believe that the local agriculture and farming can sustain rural communities.
3

Hydrodynamics of temporary open estuaries, with case studies of Mhlanga and Mdloti.

Zietsman, Ingrid. January 2004 (has links)
Estuaries are unique coastal bodies of water where water derived from land meets the sea. In order to preserve estuaries and minimise the effects of human interference in these sensitive areas, an understanding of the hydrodynamics is essential. South Africa has 259 estuaries, of which approximately 70% are temporary open. The aim of the project was to provide data to analyse the effect of different flow scenarios on the frequency, timing and duration of mouth closure for temporary open estuaries. To achieve the project aim, two case studies were undertaken, namely Mhlanga and Mdloti Estuaries. Achieving the terms of reference required monitoring of the mouth state, water level, flow rates and developing an understanding of breaching mechanisms. Observations of the mouth were used to monitor its state and initially photographs were used to monitor the water level within each estuary. During 2003 a continuous water level monitor was developed and placed in each estuary. Velocity readings were taken upstream of the estuaries at discrete time intervals and converted to flow rates using the velocity area method. A photographic survey of the berm at Mhlanga Estuary was used to observe the effect of beach processes on the mouth area. The survey observed the estuary as it shifted from closed through to open, then partially open and finally closed again, providing information on mouth mechanisms. The continuous water level monitoring provides useful information for Mhlanga Estuary in terms of breaching patterns, tidal exchange when in the open state and an indication of the time scales involved in mechanisms which change the mouth state. Similar information for Mdloti Estuary was not available as the estuary did not breach since the installation of the water level monitors, however salinity profiles from 2002 provided qualitative information on the existence of a saline intrusion into the estuary. The relationship between flow and mouth state is complex and relies on other influences such as water level and systems losses. In general estuaries will breach under high flows and remain closed under low flows, however in between these two regimes the estuary mouth state is less predictable based on flow alone. Mhlanga Estuary repeatedly breached at low tide. During the open phase tidal influence was both observed and captured by water level monitors despite the perched nature of the estuary. Closure generally occurred at high tide trapping saline water within the estuary. The two case studies provided a good basis for exploring the affects of different flow conditions on estuaries, with Mdloti Estuary experiencing the effects of the Hazelmere Dam and abstractions, while Mhlanga Estuary has increased flow due to the discharge of treated effluent to the system. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2004.
4

The zooplankton of temporarily open/closed estuaries : case studies of the Mdloti and the Mhlanga estuaries, KwaZulu-Natal North Coast.

Thwala, Xolani Christopher. January 2005 (has links)
The zooplankton communities of the Mdloti and Mhlanga estuaries were studied over a 13-month period (March 2002-March 2003). Monthly daytime samples were collected from both estuaries at the lower, middle and upper reaches using a WP-2 net and a hyperbenthic sled. Throughout the study period, the Mdloti Estuary experienced nine breachings, while the Mhlanga experienced 16 such events. Significant differences in zooplankton abundance were observed between the two estuaries (F I, 73 = 5.2; P<0.05), with the Mdloti consistently exhibiting higher values than the Mhlanga. No significant differences were, however, observed in zooplankton biomass between the two estuaries (U = 634; P>0.05). At the Mdloti, zooplankton abundance ranged from 20 ind.m-3 to 5.4 x 106 ind.m-3 , while at the Mhlanga this ranged from 76 ind.m-3 to 2.0 x 105 ind.m-3 • Zooplankton biomass ranged from 0.08 mg.m-3 (OW) to 2010 mg.m-3 (OW) at the Mdloti, and from 0.18 mg.m-3 (OW) to 1210 mg.m-3 (OW) at the Mhlanga. A one-way ANOV A revealed significant differences in zooplankton abundance between the open and the closed phase, both at the Mdloti (FI, 30 = 59; P<0.05) 'and the Mhlanga (FI, 38 = 7.3; P<0.05), with the closed phase exhibiting consistently higher values than the open. Similarly, biomass was significantly higher during the closed than the open phase, both at the Mdloti (U= 16.5; P<O.OI) and the Mhlanga (U= 88, P<O.O 1). This pattern may be attributed to the stability achieved by these systems during periods of mouth closure, when the estuaries exhibit less freshwater input and a restricted exchange of water with the sea. At the Mdloti, zooplankton biomass (OW) was positively correlated to both phytoplankton (r= 0.36) and microphytobenthos biomass (r = 0.41). At the Mhlanga, zooplankton biomass (OW) was only positively correlated to phytoplankton biomass (r = 0.45) The most abundant taxa at the Mdloti during the open phase were Pseudodiaptomus hessei and copepod nauplii, each contributing 38% and 32% of the total stock, respectively. During the closed phase, however, rotifers were by far the dominant taxon, contributing 82% of the total zooplankton abundance. These were followed by cope pod nauplii with 16%. At the Mhlanga, the most abundant groups during the open phase were again the copepod nauplii (89%) and P. hessei (7 %), while the closed phase was dominated mainly by caridean larvae (39%) and copepod nauplii (26%). The dominance of P. hessei during the open phase of both estuaries may be attributed to the pioneering nature of this species. The dominance of rotifers at the Mdloti during the closed phase may have been due to the freshwater conditions that prevailed in this estuary as a result of prolonged mouth closure. The concentration of copepod nauplii increased dramatically 2-4 weeks after major rain events, possibly due to the hatching of dormant eggs in response to freshwater pulses. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2005.
5

The dynamics of microphytobenthos in the Mdloti and Mhlanga estuaries, Kwazulu-Natal.

Iyer, Kogilam. January 2004 (has links)
Microphytobenthos (MPB) generally dominates total autotrophic biomass in temporarily open/closed estuaries (TOCEs) of South Africa. A comparative study of MPB biomass was undertaken in two KwaZulu-Natal TOCEs, the Mdloti and the Mhlanga. Both estuaries receive different volumes of treated sewage waters. The Mdloti receives 8 ML.d-1, while the Mhlanga receives 20 ML.d-1, resulting in a capping flow of 0.092 and 0.23 m3.s-1, respectively. Through these effluents, eutrophication is enhanced and periods of mouth opening are also increased and prolonged, particularly at the Mhlanga. The aim of this study was to investigate fluctuations in MPB biomass in the Mdloti and the Mhlanga systems, with emphasis on freshwater flow and the alternation of closed and open phases. Sediment samples for MPB biomass were collected on a monthly basis, between March 2002 and March 2003, in the lower (mouth), middle, and upper (head) reaches of the two estuaries. MPB biomass ranged from 1.33 to 391 mg chI a m-2 and from 1.7 to 313 mg chI a m-2 in the Mdloti and the Mhlanga, respectively. A I-way ANOVA revealed no significant differences in MPB chI a concentrations between the two estuaries for the entire data set (Fl, 76 =1.48, P > 0.05). At the Mdloti, MPB biomass varied considerably, with values ranging from 1.33 to 131 mg chI a m-2 during the open phase, and from 18 to 391 mg chI a m-2 during the closed phase. A Mann-Whitney U test confirmed the high significance of these differences between open and closed phases (U= 29, P < 0.001). At the Mhlanga, MPB biomass ranged from 7.0 to 313 mg chI a m-2 during the open phase, and from 1.7 to 267 mg chI a m-2 during the closed phase. Unlike what was observed at the Mdloti, the higher MPB values at the Mhlanga were not always associated with the closed mouth state. In relation to key physico-chemical and biological factors, grazing pressure exerted by the zooplankton community appeared to have played a major role in controlling MPB biomass. Zooplankton biomass was consistently and positively correlated to MPB biomass throughout the study period both at the Mdloti (r = 0040, P < 0.001) and at the Mhlanga (r = 0.33, p < 0.05). Unlike what was shown in previous studies, light attenuation was not significantly correlated with MPB biomass during the period ofthe study, either at the Mdloti or the Mhlanga. These results show that the opening and closing of the mouth play a key role on the MPB biomass of both estuaries. The Mdloti seems to function as a typical TOCE, with prolonged open and closed phases. The Mhlanga, on the other hand, lacks a prolonged closed phase. This, in turn, affects its entire trophic structure and functioning. / Thesis (M.Sc.)-University of KwaZulu- Natal, 2004.

Page generated in 0.0379 seconds