• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pocket Rocket: A 1U+ Propulsion System Design to Enhance CubeSat Capabilities

Harper, James M 01 June 2020 (has links) (PDF)
The research presented provides an overview of a 1U+ form factor propulsion system design developed for the Cal Poly CubeSat Laboratory (CPCL). This design utilizes a Radiofrequency Electrothermal Thruster (RFET) called Pocket Rocket that can generate 9.30 m/s of delta-V with argon, and 20.2 ± 3 m/s of delta-V with xenon. Due to the demand for advanced mission capabilities in the CubeSat form factor, a need for micro-propulsion systems that can generate between 1 – 1500 m/s of delta-V are necessary. By 2019, Pocket Rocket had been developed to a Technology Readiness Level (TRL) of 5 and ground tested in a 1U CubeSat form factor that incorporated propellant storage, pressure regulation, RF power and thruster control, as well as two Pocket Rocket thrusters under vacuum, and showcased a thrust of 2.4 mN at a required 10 Wdc of power with Argon propellant. The design focused on ground testing of the thruster and did not incorporate all necessary components for operation of the thruster. Therefore in 2020, a 1U+ Propulsion Module that incorporates Pocket Rocket, the RF amplification PCB, a propellant tank, propellant regulation and delivery, as well as a DC-RF conversion with a PIB, that are all attached to a 2U customer CubeSat for a 3U+ overall form factor. This design was created to increase the TRL level of Pocket Rocket from 5 to 8 by demonstrating drag compensation in a 400 km orbit with a delta-V of 20 ± 3 m/s in the flight configuration. The 1U+ Propulsion Module design included interface and requirements definition, assembly instructions, Concept of Operations (ConOps), as well as structural and thermal analysis of the system. The 1U+ design enhances the capabilities of Pocket Rocket in a 1U+ form factor propulsion system and increases future mission capabilities as well as propulsion system heritage for the CPCL.
2

Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission

Risi, Benjamin 04 July 2014 (has links)
The Canadian Nanosatellite Advanced Propulsion System is a liquefied cold-gas thruster system that provides propulsive capabilities to CanX-4/-5, the Canadian Advanced Nanospace eXperiment 4 and 5. With a launch date of early 2014, CanX-4/-5's primary mission objective is to demonstrate precise autonomous formation flight of nanosatellites in low Earth orbit. The high-level CanX-4/-5 mission and system architecture is described. The final design and assembly of the propulsion system is presented along with the lessons learned. A high-level test plan provides a roadmap of the testing required to qualify the propulsion system for flight. The setup and execution of these tests, as well as the analyses of the results found therein, are discussed in detail.

Page generated in 0.065 seconds