• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Test, Calibration and Qualification of Satellite Sun Sensors, Power Systems and Supporting Software Development

Gavigan, Patrick 30 May 2011 (has links)
This thesis describes technologies developed for nanosatellites at the Space Flight Laboratory. A critical ground station component, the Terminal Node Controller, was upgraded in order to support Generic Nanosatellite Bus and future missions. Sun sensor requirements and operation were reviewed, followed by details of the author's work in executing the acceptance testing on these parts, including thermal shock testing, thermal functional testing, calibration, system level testing and on orbit commissioning. A new calibration test process was developed, along with supporting structure and software to ease the testing process, producing accurate calibration parameters and expected performance results for the sensors. A thermal qualification campaign was completed, demonstrating that sun sensors are capable of functioning with negligible performance degradation after exposure to extreme temperatures. A process for installing the sun sensor pin hole was developed using photolithography. Finally, power subsystem analysis for the NEMO-AM mission is presented.
2

Design, Test, Calibration and Qualification of Satellite Sun Sensors, Power Systems and Supporting Software Development

Gavigan, Patrick 30 May 2011 (has links)
This thesis describes technologies developed for nanosatellites at the Space Flight Laboratory. A critical ground station component, the Terminal Node Controller, was upgraded in order to support Generic Nanosatellite Bus and future missions. Sun sensor requirements and operation were reviewed, followed by details of the author's work in executing the acceptance testing on these parts, including thermal shock testing, thermal functional testing, calibration, system level testing and on orbit commissioning. A new calibration test process was developed, along with supporting structure and software to ease the testing process, producing accurate calibration parameters and expected performance results for the sensors. A thermal qualification campaign was completed, demonstrating that sun sensors are capable of functioning with negligible performance degradation after exposure to extreme temperatures. A process for installing the sun sensor pin hole was developed using photolithography. Finally, power subsystem analysis for the NEMO-AM mission is presented.
3

Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission

Risi, Benjamin 04 July 2014 (has links)
The Canadian Nanosatellite Advanced Propulsion System is a liquefied cold-gas thruster system that provides propulsive capabilities to CanX-4/-5, the Canadian Advanced Nanospace eXperiment 4 and 5. With a launch date of early 2014, CanX-4/-5's primary mission objective is to demonstrate precise autonomous formation flight of nanosatellites in low Earth orbit. The high-level CanX-4/-5 mission and system architecture is described. The final design and assembly of the propulsion system is presented along with the lessons learned. A high-level test plan provides a roadmap of the testing required to qualify the propulsion system for flight. The setup and execution of these tests, as well as the analyses of the results found therein, are discussed in detail.

Page generated in 0.0673 seconds