• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wavelength selective and 3D stacked microbolometers for multispectral infrared detection

Park, Jong Yeon 12 July 2012 (has links)
Development of wavelength selective detection, tunable multi-spectral capability with functionality in the infrared spectral region is highly desirable for a variety of applications such as thermography, chemical processing and environmental monitoring, spectroradiometry, medical diagnosis, Fourier transform infrared spectroscopy, night vision, mine detection, military defense and astronomy. Infrared detector with wavelength selective functionality have emerged as next generation infrared detectors. This study presents fabrication and characterization of wavelength selective Germanium dielectric coated Salisbury screen and novel 3D stacked microbolometer for multispectral infrared detection. This novel fabrication process helps produce much flatter, more robust device structure by using an un-patterned sacrificial layer to produce device legs that hold the central structural layer above the reflective mirror supported by a completely flat sacrificial layer with sufficient thermal isolation to allow microbolometer operation. For the fabricated wavelength selective Germanium dielectric coated Salisbury screen microbolometer using self aligned process, the FTIR measured spectral responses and numerical simulation results show excellent agreement with wavelength selectivity (9[mu]m, 10[mu]m, 11[mu]m) in long wave infrared (LWIR) region. To achieve multicolor infrared detection, recently a few device concepts using uncooled detectors have been reported. However, none of the proposed device designs have demonstrated fabrication. Moreover, Commercial Fabry-perot resonant cavity based uncooled microbolometers (Air gap: 2 to 2.5μm) have limited design parameters due to multicolor narrow band spectral response. In this study, a feasible device fabrication method for novel 3D stacked microbolometer is demonstrated for multispectral uncooled infrared detector that can achieve tunable narrowband absorption in mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions. / text
2

Etude théorique du dimensionnement d’une matrice bolométrique au pas de 5µm, par report de dispositifs SOI sur structures suspendues pour des applications dans l’imagerie infrarouge non refroidi / Theoretical study of the design of a 5µm pitch bolometer matrix, by wafer bonding of SOI devices on suspended structures for applications in uncooled infrared imaging

Fuxa, Étienne 15 December 2016 (has links)
Les travaux présentés dans ce manuscrit portent sur la problématique de réduction du pas du pixel des matrices bolométriques utilisées dans l'imagerie infrarouge non refroidie (domaine LWIR). Si l'intérêt d'une telle réduction se comprend bien (augmentation des performances et/ou réduction des coûts de production), la miniaturisation sans perte de performance du point de vue du pixel est un véritable défi. En effet pour les technologies de l'état de l'art à base de thermistors la réduction des dimensions s'accompagne d'une dégradation du rapport signal à bruit ainsi que de l'isolation thermique des détecteurs, nécessaire à l'obtention d'un signal important. Nos travaux ont consisté en l'évaluation de l'intérêt de l'utilisation de dispositifs SOI en tant que transducteurs thermiques dans une architecture pensée pour le pas de 5µm. Nous avons donc étudié les propriétés thermiques intrinsèques de ces dispositifs pour comparer l'efficacité théorique d'un tel bolomètre au pas de 5µm à celle attendue pour un bolomètre à l'état de l'art échelonné au même pas ce qui a permis de conclure quant à l'intérêt de ces dispositifs. Pour terminer nous avons également confirmé qu'une structure permet d'obtenir une absorption convenable mais que la technologie 5µm pose encore un problème du point de vue de l'isolation thermique du détecteur, problème qui n'est pas spécifique au bolomètre SOI et ne remet par conséquent pas en cause son intérêt. / The work reported in this document relates to pixel size reduction in uncooled infrared imaging in the LWIR range. The motivation for such a downsize is pretty straightforward (better matrices performances or lower production costs), achieving this without lowering the pixel performance is a true challenge. That is, for state of the art detectors based on thermistors, pixel downscaling leads to lower signal to noise ratio as well as a decrease in detector thermal isolation that in turn reduces the signal's amplitude. Our work focused on the study of SOI components for use as thermal transducer in a 5µm pixel design. As such we evaluated these components' intrinsic thermal properties to compare expected performance of a 5µm SOI bolometer with that of a state of the art bolometer scaled to the same pixel size, which allowed us to conclude that the interest for SOI bolometers is well-founded. We were also able to confirm that our pixel design is able to maintain sufficient IR absorption, but that the thermal isolation is yet problematic. This problem is however not specific to SOI bolometers and as such does not undermine the interest for SOI detectors for 5µm pixel pitch bolometers for uncooled IR imaging.
3

Analysis and Modeling of Uncooled Microbolometers with Tunable Thermal Conductance

Topaloglu, Nezih January 2009 (has links)
Uncooled microbolometers have attracted significant interest due to their small size, low cost and low power consumption. As the application range of microbolometers broadens, increasing the dynamic range becomes one of the main objectives of microbolometer research. Targeting this objective, tunable thermal conductance microbolometers have been proposed recently, in which the thermal conductance is tuned by electrostatic actuation. Being a new concept in the field, the current tunable thermal conductance microbolometers have significant potential for improvement in design and performance. In this thesis, an extensive analysis of tunable thermal conductance microbolometers is made, an analytical model is constructed for this purpose, and solutions are proposed to some potential problems such as in-use stiction and variation in spectral response. The current thermal conductance tuning mechanisms use the substrate for electrostatic actuation, which does not support pixel-by-pixel actuation. In this thesis, a new thermal conductance tuning mechanism is demonstrated, that enables pixel-by-pixel actuation by using the micromirror as an actuation terminal instead of the substrate. In addition, a stopper mechanism is used to decrease the risk of in-use stiction. With this new mechanism, the thermal conductance can be tuned by a factor of three at relatively low voltages, making it a promising thermal conductance tuning mechanism for adaptive infrared detectors. Effective estimation of the performance parameters of a tunable thermal conductance microbolometer in the design state requires an analytical model that combines the physics of infrared radiation detection and the thermal conductance tuning mechanisms. As a part of this research, an extensive analytical model is presented, which includes the electrostatic-structural modeling of the thermal conductance tuning mechanism, and electromagnetic and thermal modeling of the microbolometer. The accuracy of the thermal model is of significant importance as the operation of the tuning mechanism within the desired range should be verified in the design stage. A thermal model based on the solution of the microbolometer heat conduction equation is established, which is easily applicable to conventional and tunable thermal conductance microbolometers of various shapes. The constructed microbolometer model is validated by experiments and finite element model simulations. Furthermore, the effect of thermal conductance tuning on spectral response is analyzed. The present thermal conductance tuning mechanisms result in variations in spectral response, which is an undesired effect in many applications. As a solution, a new microbolometer architecture is proposed, in which the spectral response is not affected by thermal conductance. The microbolometer is designed using an analytical model and its performance is characterized by finite element model simulations. To realize the proposed design, a fabrication process flow is offered. It is shown that the proposed microbolometer exhibits high performance, tunable thermal conductance and constant spectral response.
4

Analysis and Modeling of Uncooled Microbolometers with Tunable Thermal Conductance

Topaloglu, Nezih January 2009 (has links)
Uncooled microbolometers have attracted significant interest due to their small size, low cost and low power consumption. As the application range of microbolometers broadens, increasing the dynamic range becomes one of the main objectives of microbolometer research. Targeting this objective, tunable thermal conductance microbolometers have been proposed recently, in which the thermal conductance is tuned by electrostatic actuation. Being a new concept in the field, the current tunable thermal conductance microbolometers have significant potential for improvement in design and performance. In this thesis, an extensive analysis of tunable thermal conductance microbolometers is made, an analytical model is constructed for this purpose, and solutions are proposed to some potential problems such as in-use stiction and variation in spectral response. The current thermal conductance tuning mechanisms use the substrate for electrostatic actuation, which does not support pixel-by-pixel actuation. In this thesis, a new thermal conductance tuning mechanism is demonstrated, that enables pixel-by-pixel actuation by using the micromirror as an actuation terminal instead of the substrate. In addition, a stopper mechanism is used to decrease the risk of in-use stiction. With this new mechanism, the thermal conductance can be tuned by a factor of three at relatively low voltages, making it a promising thermal conductance tuning mechanism for adaptive infrared detectors. Effective estimation of the performance parameters of a tunable thermal conductance microbolometer in the design state requires an analytical model that combines the physics of infrared radiation detection and the thermal conductance tuning mechanisms. As a part of this research, an extensive analytical model is presented, which includes the electrostatic-structural modeling of the thermal conductance tuning mechanism, and electromagnetic and thermal modeling of the microbolometer. The accuracy of the thermal model is of significant importance as the operation of the tuning mechanism within the desired range should be verified in the design stage. A thermal model based on the solution of the microbolometer heat conduction equation is established, which is easily applicable to conventional and tunable thermal conductance microbolometers of various shapes. The constructed microbolometer model is validated by experiments and finite element model simulations. Furthermore, the effect of thermal conductance tuning on spectral response is analyzed. The present thermal conductance tuning mechanisms result in variations in spectral response, which is an undesired effect in many applications. As a solution, a new microbolometer architecture is proposed, in which the spectral response is not affected by thermal conductance. The microbolometer is designed using an analytical model and its performance is characterized by finite element model simulations. To realize the proposed design, a fabrication process flow is offered. It is shown that the proposed microbolometer exhibits high performance, tunable thermal conductance and constant spectral response.
5

A Low-cost Uncooled Infrared Detector Array And Its Camera Electronics

Akcoren, Dincay 01 February 2011 (has links) (PDF)
This thesis presents the development of integrated readout electronics for diode type microbolometers and development of external camera electronics for microbolometers. The developed readout electronics are fabricated with its integrated 160x120 resolution FPA (Focal Plane Array) in the XFAB SOI-CMOS 1.0 &mu / m process. The pixels in the FPA have 70 &mu / m pixel pitch, and they are sensitive in the 8&ndash / 12 &mu / m band of the infrared spectrum. Each pixel has 4 serially connected diodes, and diode turn on voltage changes as the temperature of the suspended and thermally isolated pixel increases due to the absorbed infrared power. Suspension of the pixels is obtained with a post-CMOS MEMS etching process, but this process requires no critical litography and/or deposition steps. This dramatically reduces the detector process cost, which makes this microbolometer FPA suitable for ultra low-cost applications such as automobile, security, and commercial applications. The readout electronics of the FPA include digital blocks such as timing and programming blocks as well as analog blocks such as a differential trans-conductance amplifier, a switched capacitor integrator, a sampleand- hold, and current DACs. This new readout design has reduced number of pins to simplify the external electronics and allows wafer-level vacuum packaging compared to the 128x128 FPA developed in a previous study at METU with the same approach. Both of these features further decrease the cost. Two kinds of external camera electronics are developed for two SOI type microbolometers. The first one is for the 128x128 SOI microbolometer previously designed in METU. The developed external camera electronics have 1.5mVrms noise, which is much less than the microbolometer noise. The overall system has an average NETD of 465 mK and a peak NETD of 320mK. The second developed external camera electronics are for the 160x120 SOI microbolometers that developed in the scope of this thesis. The developed external camera electronics has 0.55mVrms noise which is much less than the bolometer noise which is 5mVrms. The overall system has an average NETD of 820 mK and a peak NETD of 350 mK. Each of these external camera electronics include a custom designed PCB, an FPGA board with appropiate configurion and a software working on a PC. The custom designed PCB holds the external components for the microbolometer, an FPGA takes and processes the bolometer data and it sends to a PC, and a PC processes these data and forms a streaming video. These two external camera electronics allow to obtain human images verifying that the developed microbolometers can be used for security and automotive applications.
6

Uncooled Infrared Focal Plane Arrays With Integrated Readout Circuitry Using Mems And Standard Cmos Technologies

Eminoglu, Selim 01 January 2003 (has links) (PDF)
This thesis reports the development of low-cost uncooled microbolometer focal plane arrays (FPAs) together with their integrated readout circuitry for infrared night vision applications. Infrared microbolometer detectors are based on suspended and thermally isolated p+-active/n-well diodes fabricated using a standard 0.35 &micro / m CMOS process followed by a simple post-CMOS bulk-micromachining process. The post-CMOS process does not require any critical lithography or complicated deposition steps / and therefore, the FPA cost is reduced considerably. The integrated readout circuitry is developed specially for the p+-active/n-well diode microbolometers that provides lower input referred noise voltage than the previously developed microbolometer readout circuits suitable for the diode type microbolometers. Two FPAs with 64 &times / 64 and 128 &times / 128 array formats have been implemented together with their low-noise integrated readout circuitry. These FPAs are first of their kinds where such large format uncooled infrared FPAs are designed and fabricated using a standard CMOS process. The fabricated detectors have a temperature coefficient of -2 mV/K, a thermal conductance value of 1.55 &times / 10-7 W/K, and a thermal time constant value of 36 ms, providing a measured DC responsivity (&amp / #8476 / ) of 4970 V/W under continuous bias. The measured detector noise is 0.69 &micro / V in 8 kHz bandwidth, resulting a measured detectivity (D*) of 9.7 &times / 108 cm&amp / #8730 / Hz/W. The 64 &times / 64 FPA chip has 4096 pixels scanned by an integrated 16-channel parallel readout circuit composed of low-noise differential transconductance amplifiers, switched capacitor integrators, and sample-and-hold circuits. It measures 4.1 mm &times / 5.4 mm, dissipates 25 mW power, and provides an estimated NETD value of 0.8 K at 30 frames/sec (fps) for an f/1 optics. The measured uncorrected voltage non-uniformity for the 64 &times / 64 array after the CMOS fabrication is 0.8 %, which is reduced further down to 0.2 % for the 128 &times / 128 array using an improved FPA structure that can compensate for the fixed pattern noise due to the FPA routing. The 128 &times / 128 FPA chip has 16384 microbolometer pixels scanned by a 32-channel parallel readout circuitry. The 128 &times / 128 FPA measures 6.6 mm &times / 7.9 mm, includes a PTAT temperature sensor and a vacuum sensor, dissipates 25 mW power, and provides an estimated NETD value of 1 K at 30 fps for an f/1 optics. These NETD values can be decreased below 350 mK with further optimization of the readout circuit and post-CMOS etching steps. Hence, the proposed method is very cost-effective to fabricate large format focal plane arrays for very low-cost infrared imaging applications.
7

High Performance Readout Electronics For Uncooled Infrared Detector Arrays

Yildirim, Omer Ozgur 01 September 2006 (has links) (PDF)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 &micro / m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabricated CTIA type readout circuit uses two digital-to-analog converters (DACs) with multiple analog buses which compensate the resistance nonuniformity by adjusting the bias currents of detector and reference resistors. Compensated detector current is integrated by a switched capacitor integrator with offset cancellation capability followed by a sample-and-hold circuit. The measured detector referred current noise is 47.2 pA in an electrical bandwidth of 2.6 KHz, corresponding to an expected SNR of 530. The dynamic nonuniformity compensation circuit uses a feedback structure that dynamically changes the bias currents of the reference and detector resistors. A special feature of the circuit is that it provides continuous compensation for the detector and reference resistances due to temperature changes over time. Test results of the fabricated circuit show that the circuit reduces the offset current due to resistance nonuniformity 42.5 times. However, the calculated detector referred current noise is 360 pA, which limits the circuit SNR to 70. The improved CTIA type readout circuit introduces a new detector biasing method by using an additional auxiliary biasing transistor for better current controllability. The improved readout circuit alleviates the need for high resolution compensation DACs, which drastically decreases the circuit area. The circuit occupies an area of one seventh of the first design. According to test results, the current compensation ratio is 170, and the detector referred current noise is 48.6 pA in a 2.6 KHz bandwidth.
8

Imagerie dans le domaine térahertz / Imaging in the terahertz domain

Ketchazo Nsenguet, Christian 28 June 2012 (has links)
Cette thèse s'intéresse à la phénoménologie relative à l'imagerie passive dans le domaine sub-térahertz allant de 0,1 à 1 THz. Dans cette fenêtre électromagnétique, les matériaux diélectriques comme les vêtements sont transparents ce qui ouvre la voie à la réalisation d'images des personnes débarrassées de leurs vêtements et la possibilité de détecter des objets extracorporels cachés sous ces derniers. Le processus de formation d'images repose sur la détection des puissances de rayonnement provenant de la scène et sur la discrimination des signatures spectrales des objets de la scène. Dans cette thèse, nous mesurons l'indice, la transmission et la diffusion de quelques vêtements et autres matériaux dissimulants dans le domaine térahertz. La technique de mesure utilisée est la spectroscopie térahertz dans le domaine temporel, la génération et la détection des signaux sont réalisées par les photocommutateurs ultra-rapides à base de GaAs-BT. Les résultats obtenus s'étendent jusqu'à 2 ou 2,5 THz. La technique de mesure est ensuite adaptée pour la détermination in-vivo des propriétés térahertz de la peau humaine. La base de données constituée par la campagne de mesures est enfin intégrée dans un modèle radiométrique pour l'étude des scénarios d'imagerie passive de détection à distance. Les performances obtenables sont discutées et les spécifications favorables à l'imagerie sont déduites. / The thesis focuses on the phenomenology related to passive imaging in Millimeter/Terahertz domain, 0.1 to 1 THz. In this domain, dielectric materials such as clothing are transparent, this paves the way for the creation of images of people guillemotleft stripped of guillemotright their clothing and the ability to detect extracorporeal objects hidden behind the clothes. In this thesis, we measure the optical index, the transmission and the diffusion of some hidden materials in the terahertz domain. The measurement technique used is the terahertz time-domain spectroscopy. The generation and detection of signals are carried out by LT-GaAS photoswitches. The results extend to 2 or 2.5 THz. The optical properties of human skin is measured using our experimental setup mounted in reflection geometry. The database made from the measurement campaign is finally integrated into a radiometric model for the study of passive imaging scenarios for remote sensing. Obtainable performances are discussed and favorable specification to imaging are derived.
9

Microbolometros resistivos em membrana suspensa / Suspended-membrane resistive microbolometers

Della Lucia, Felipe Lorenzo, 1984- 13 August 2018 (has links)
Orientador: Jacobus Willibrordus Swart / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T00:28:58Z (GMT). No. of bitstreams: 1 DellaLucia_FelipeLorenzo_M.pdf: 2225962 bytes, checksum: 809ea9b9a2b7ea0c114f8fa449a539a1 (MD5) Previous issue date: 2009 / Resumo: Este trabalho tem como objetivo desenvolver a tecnologia de microbolômetros resistivos que serão utilizados como sensores de infravermelho. Para isso, foi realizado um projeto inicial de dispositivo constituído de cálculos matemáticos e simulações computacionais a fim de prever o comportamento do dispositivo e ajustar parâmetros de processo de fabricação de modo a aperfeiçoar seu desempenho. De posse dos dados do projeto, foi realizada a fabricação. Foram fabricados microbolômetros resistivos de Silício Policristalino (Si-poli) em membranas suspensas para aumentar a isolação térmica do material resistivo. Ouro Negro (poroso) foi evaporado de forma a funcionar como camada absorvedora de radiação infravermelha. Eventuais problemas ocorridos durante a fabricação foram relatados, sanados e realimentados ao processo de fabricação de forma a simplificar e aperfeiçoar ao máximo a fabricação. Imagens realizadas por microscópio eletrônico de varredura e cortes realizados utilizando Feixe de Íons Focalizado mostram os detalhes da fabricação, indicando os materiais utilizados e a forma na qual a membrana de Si-poli está isolada do substrato. As medidas realizadas nos dispositivos fabricados revelam uma responsividade de 1,8 V/W, TCR de -0,95%/K, tempo de resposta de 13 ms e detectividade de 5,66.105 cm.Hz1/2.W-1. Apesar de algumas destas características não se encontrarem dentro dos parâmetros projetado, outras se assemelham às características de dispositivos comerciais e publicados na literatura. Como resultado deste trabalho, um ambiente favorável foi preparado para o desenvolvimento deste tipo de dispositivo. Matrizes de dispositivos poderão também ser desenvolvidas de forma a produzirem imagens em infravermelho que poderão ser utilizadas em diversas aplicações diferentes. / Abstract: This work has as a main goal to develop the resistive microbolometers technology that will be used as infrared sensors. In order to do so, an initial device design was performed using mathematical calculations and computational simulations were accomplished to predict the behavior and adjust the fabrication process parameters of this device to improve its performance. After the simulations, the fabrication was performed. Using Polysilicon as active element of the resistive microbolometers, suspended membranes were fabricated to enhance thermal isolation. Gold Black (porous) was evaporated to work as an infrared radiation absorber. Some problems that occurred during the fabrication were reported, solved and provided feedback to simplify and improve the fabrication. Some Scanning Electron Microscopy images and cuts using Focused Ion Beam show some fabrication details, indicating the materials used and how the Polysilicon membrane is isolated from the substrate. The measurements performed in the fabricated device show that the responsivity is about 1.8 V/W, the TCR is about -0.95%/K, the response time is 13 ms and the specific detectivity is 5,66.105 cm.Hz1/2.W-1. Although some of these characteristics are not within the designed parameters, others are similar to the characteristics of commercial devices and devices found in literature. As a result of this work, a favorable environment was prepared to the development of this kind of device. Arrays of devices can also be developed in order to produce infrared images which may be used in many different applications. / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
10

Cmos Readout Electronics For Microbolometer Type Infrared Detector Arrays

Toprak, Alperen 01 February 2009 (has links) (PDF)
This thesis presents the development of CMOS readout electronics for microbolometer type infrared detector arrays. A low power output buffering architecture and a new bias correction digital-to-analog converter (DAC) structure for resistive microbolometer readouts is developed / and a 384x288 resistive microbolometer FPA readout for 35 &micro / m pixel pitch is designed and fabricated in a standard 0.6 &micro / m CMOS process. A 4-layer PCB is also prepared in order to form an imaging system together with the FPA after detector fabrication. The low power output buffering architecture employs a new buffering scheme that reduces the capacitive load and hence, the power dissipation of the readout channels. Furthermore, a special type operational amplifier with digitally controllable output current capability is designed in order to use the power more efficiently. With the combination of these two methods, the power dissipation of the output buffering structure of a 384x288 microbolometer FPA with 35 &micro / m pixel pitch operating at 50 fps with two output channels can be decreased to 8.96% of its initial value. The new bias correction DAC structure is designed to overcome the power dissipation and noise problems of the previous designs at METU. The structure is composed of two resistive ladder DAC stages, which are capable of providing multiple outputs. This feature of the resistive ladders reduces the overall area and power dissipation of the structure and enables the implementation of a dedicated DAC for each readout channel. As a result, the need for the sampling operation required in the previous designs is eliminated. Elimination of sampling prevents the concentration of the noise into the baseband, and therefore, allows most of the noise to be filtered out by integration. A 384x288 resistive microbolometer FPA readout with 35 &amp / #956 / m pixel pitch is designed and fabricated in a standard 0.6 &amp / #956 / m CMOS process. The fabricated chip occupies an area of 17.84 mm x 16.23 mm, and needs 32 pads for normal operation. The readout employs the low power output buffering architecture and the new bias correction DAC structure / therefore, it has significantly low power dissipation when compared to the previous designs at METU. A 4-layer imaging PCB is also designed for the FPA, and initial tests are performed with the same PCB. Results of the performed tests verify the proper operation of the readout. The rms output noise of the imaging system and the power dissipation of the readout when operating at a speed of 50 fps is measured as 1.76 mV and 236.9 mW, respectively.

Page generated in 0.0634 seconds