• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 57
  • 51
  • 50
  • 40
  • 28
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electroelastic Modeling and Testing of Direct Contact Ultrasonic Clothes Drying Systems

Dupuis, Eric Donald 06 July 2020 (has links)
Energy efficient appliances and devices are becoming increasingly necessary as emissions from electricity production continue to increase the severity of global warming. Many of such appliances have not been substantially redesigned since their creation in the early 1900s. One device in particular which has arguably changed the least and consumes the most energy during use is the electric clothes dryer. The common form of this technology in the United States relies on the generation of thermal energy by passing electrical current through a metal. The resulting heat causes liquid within the clothing to evaporate where humid air is ejected from the control volume. While the conversion of energy from electrical to thermal through a heating element is efficient, the drying characteristics of fabrics in a warm humid environment are not, and much of the heat inside of the dryer does not perform work efficiently. In 2016, researchers at Oak Ridge National Laboratory in Knoxville, Tennessee, proposed an alternative mechanic for the drying of clothes which circumvents the need for thermal energy. This method is called direct-contact ultrasonic clothes drying, utilizing atomization through direct mechanical coupling between mesh piezoelectric transducers and wet fabric. During the atomization process, vertical oscillations of a contained liquid, called Faraday excitations, result in the formation of standing waves on the liquid surface. At increasing amplitudes and frequencies of oscillation, wave peaks become extended and form "necks" connecting small secondary droplets to the bulk liquid. When the oscillation reaches an acceleration threshold, the droplet momentum is sufficient to break the surface tension of the neck and enable the droplets to travel away from the liquid. For smaller drops where surface tension is high, a larger magnitude of acceleration is needed to reach the critical neck lengths necessary for droplet ejection. The various pore sizes within the many fabrics comprising our clothing results in many sizes of droplets retained by the fabric, affecting the rate of atomization due to the differences in surface tension. In this study, we will investigate the physical processes related to the direct contact ultrasonic drying process. Beginning with the electrical actuation of the transducer used in the world's first prototype dryer, we will develop an electromechanical model for predicting the resulting deformation. Various considerations for the material properties and geometry of the transducer will be made for optimizing the output acceleration of the device. Next, the drying rates of fabrics in contact with the transducer will be modeled for identification of parameters which will facilitate timely and energy efficient drying. This task will identify the first ever mechanically coupled drying equation for fabrics in contact with ultrasonic vibrations. The ejection rate of the water atomized by the transducer and passed through microchannels to facilitate drying will then be physically investigated to determine characteristics which may improve mass transport. Finally, future considerations and recommendations for the development of ultrasonic drying will be made as a result of the insight gained by this investigation. / Doctor of Philosophy / Energy efficient appliances and devices are becoming increasingly necessary as emissions from electricity production continue to increase the severity of global warming. Many of such appliances have not been substantially redesigned since their creation in the early 1900s. One device in particular which has arguably changed the least and consumes the most energy during use is the electric clothes dryer. The common form of this technology in the United States relies on the generation of thermal energy by passing electrical current through a metal. The resulting heat causes liquid within the clothing to evaporate where the humid air is ejected from the control volume. While the conversion of energy from electrical to thermal through a heating element is efficient, the drying characteristics of fabrics in a warm humid environment are not, and much of the heat inside of the volume does not perform drying as efficiently as possible. In 2016, researchers at Oak Ridge National Laboratory in Knoxville, Tennessee, proposed an alternative mechanism for the drying of clothes which circumvents the need for thermal energy. This method is called direct-contact ultrasonic clothes drying, and utilizes a vibrating disk made of piezoelectric and metal materials to physically turn the water retained in clothing into a mist, which can be vented away leaving behind dry fabric. This method results in the water leaving the fabric at room temperature, rather than being heated, which bypasses the need for a substantial amount of energy to convert from the liquid to gas phase. The first ever prototype dryer shows the potential of being twice as efficient as conventional dryers. This investigation is based around improving the device atomizing the water within the clothing, as well as understanding physical processes behind the ultrasonic drying process. These tasks will be conducted through experimental measurements and mathematical models to predict the behavior of the atomizing device, as well as computer software for both the parameters experimentally measured, and items which cannot be measured such as the flow in very small channels. The conclusions of this study will be recommendations for the future development of direct contact ultrasonic drying technology.
22

Modeling and Simulation of Biomolecular Flow in Microchannel

Sunitha, M January 2016 (has links) (PDF)
Microfluidics deals with the behavior, control and manipulation of fluids which are confined at micrometer length scale. It has important application in lab-on-a chip technology, micro-propulsion, additive manufacturing, and micro-thermal technologies. Microfluidics has been widely used in detection, separation, transportation, and mixing of fluids and particles. The work carried out for the thesis to study the fluid-structure interaction in micro-channel involves an experimental part and a simulation part. In the experimental part the characterization of biofluid (RBC in BSA) is carried out based on the power law of fluid and flow behavior is studied. Also the dependence of fluid concentration on the viscosity in the channel is studied. The results are analyzed. Transition of fluid behavior from non-Newtonian shear thickening to non-Newtonian shear thinning is observed when the RBC concentration varies from 5.5×106 to 5.5×107 cells/ml in the channel. From the viscosity measurements of the biofluid it is observed that the average viscosity in the channel increases on increasing concentration of the fluid for shear thickening fluids. In the simulation part, interaction behavior of biomolecule DNA is studied in the channel containing biofluid which is characterized in the experimental part. Cell free DNAs are common problem in infectious disease detection. Based on the assumptions of the WLC model, DNA strand is assumed as a one dimensional elastic member with its one end fixed at the channel wall and the other end free to move in the fluid. Bent and straight DNAs are considered for the study. Multiple scales are involved in this problem which is not fully understood. DNA strands in the channel are exposed to different forces in the channel which are mainly due to the pressure and viscous effects. Numerical simulations are carried out for the multiphysics problem of DNA in the fluid using a coupled multiphysics finite element scheme and the results are obtained. Same procedure is carried out considering smaller channels and also for PBS solution as background fluid to obtain consistent results. It is found that when the channel width increases the tip displacement of DNA decreases. It was observed that DNA tip displacement is more in the channel when its end-to-end length is approximately half the width of the channel. Potential application of these modeling and simulation are in molecular screening processes to improve the performance of microfluidic DNA chips, and in design of micro-channel structures of microfluidic devices.
23

Micro PIV and Numerical Investigation of a Micro-Couette Blood Flow

Mehri, Rym 22 June 2012 (has links)
The purpose of this thesis is to design a physical microchannel model for micro-Couette blood flow that provides constant and controlled conditions to study and analyze Red Blood Cell (RBC) aggregation. The innovation of this work is that the Couette blood flow is created by the motion of a second fluid with different properties, thereby entraining the blood. The experimental work is coupled with three-dimensional numerical simulations performed using a research Computational Fluid Dynamic (CFD) Solver, Nek5000, based on the spectral element method, while the experiments are conducted using a micro Particle Image Velocimetry (μPIV) system with a double frame CCD camera and an inverted laser imaging microscope. The design of the channel (150 × 33 μm and 170 × 64 μm microchannels) is based on several parameters determined numerically, such as the velocity and viscosity ratios and the degree of miscibility between the fluids, and the resulting configurations are fabricated in the laboratory using standard photolithography methods. The microchannel designed numerically is then tested experimentally, first, with a Newtonian fluid (glycerol), then with RBC suspensions to be compared to the simulations results. It was found that, numerically, using a velocity ratio of 4 between the two fluids, a third of the channel thickness corresponds to the blood layer. Within that range, it can be concluded, that the velocity profile of the blood layer is approximately linear as confirmed by experimental tests, resulting in the desired profile to study RBC aggregation in controlled conditions. The effect of several parameters, such as the hematocrit and the shear rate, on the RBC aggregates and the velocity profile is investigated, through experiments on the RBC suspensions. The final goal of this research is to ensure the compatibility of the results between the experiments and the Newtonian numerical model for several ranges of shear rate with the future intention of finding an accurate method to be able to quantitatively analyze aggregates and determine the number of RBC in each aggregate depending on the flow conditions (the shear rate).
24

DRUG DELIVERY MICRODEVICE: DESIGN, SIMULATION, AND EXPERIMENTS

Lee, Jae Hwan 26 March 2013 (has links)
Ocular diseases such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting millions of adults in US and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This research focused on an implantable ocular drug delivery device design, simulation and experiments with design requirements including constant diffusion rate, extended period of time operation, the smallest possible volume of device and reservoir. The drug delivery device concept uses micro-/nano-channels module embedded between top and bottom covers with a drug reservoir. Several microchannel design configurations were developed and simulated using commercial finite element software (ANSYS and COMSOL), with a goal to investigate how the microchannel dimensions affect the diffusion characteristics. In addition to design simulations, various microchannel configurations were fabricated on silicon wafer using photolithography techniques as well as 3D printing. Also, the top and bottom covers of the device were fabricated from PDMS through replica molding techniques. These fabricated microchannel design configurations along with top and bottom covers were all integrated into the device. Both single straight microchannels (nine different sizes of width and depth) as well as four micro-channel configurations were tested using citric acid (pH changes) and Brimonidine drug (concentration changes using the Ultra-Violet Visible Spectrophotometer) for their diffusion characteristics. Experiments were conducted to obtain the diffusion rates through various single micro-channels as well as micro-channel configurations using the change in pH neutral solution to verify the functionality and normalized diffusion rate of microchannels and configurations. The results of experimental data of diffusion rate were compared with those obtained from simulations, and a good agreement was found. The results showed the diffusion rate and the optimum size of microchannel in conjunction with the required drug release time. The results obtained also indicate that even though specific diffusion rates can be obtained but delivering the drug with constant amount needs a mechanism at the device outlet with some control mechanism. For future studies, this result may be used as a baseline for developing a microfabricated device that allows for accurate drug diffusion in many drug delivery applications.
25

Time-Resolved Characterization of Thermal and Flow Dynamics During Microchannel Flow Boiling

Todd A. Kingston (6634772) 14 May 2019 (has links)
<div>The continued miniaturization and demand for improved performance of electronic devices has resulted in the need for transformative thermal management strategies. Flow boiling is an attractive approach for the thermal management of devices generating high heat fluxes. However, designing heat sinks for two-phase operation and predicting their performance is difficult because of, in part, commonly encountered flow boiling instabilities and a lack of experimentally validated physics-based phase change models. This work aims to advance the state of the art by furthering our understanding of flow boiling instabilities and their implications on the operating characteristics of electronic devices. This is of particular interest under transient and non-uniform heating conditions because of recent advancements in embedded cooling techniques, which exacerbate spatial non-uniformities, and the demand for cooling solutions for next-generation electronic devices. Additionally, this work aims to provide a high-fidelity experimental characterization technique for slug flow boiling to enable the validation of physics-based phase change models.</div><div><br></div><div>To provide a foundation for which the effects of transient and non-uniform heating can be studied, flow boiling instabilities are first studied experimentally in a single, 500 μm-diameter borosilicate glass microchannel. A thin layer of optically transparent and electrically conductive indium tin oxide coated on the outside surface of the microchannel provides a spatially uniform and temporally constant heat flux via Joule heating. The working fluid is degassed, dielectric HFE-7100. Simultaneous high-frequency measurement of reservoir, inlet, and outlet pressures, pressure drop, mass flux, inlet and outlet fluid temperatures, and wall temperature is synchronized to high-speed flow visualizations enabling transient characterization of the thermal-fluidic behavior.</div><div><br></div><div>The effect of flow inertia and inlet liquid subcooling on the rapid-bubble-growth instability at the onset of boiling is assessed first. The mechanisms underlying the rapid-bubble-growth instability, namely, a large liquid superheat and a large pressure spike, are quantified. This instability is shown to cause flow reversal and can result in large temperature spikes due to starving the heated channel of liquid, which is especially severe at low flow inertia.</div><div><br></div><div>Next, the effect of flow inertia, inlet liquid subcooling, and heat flux on the hydrodynamic and thermal oscillations and time-averaged performance is assessed. Two predominant dynamic instabilities are observed: a time-periodic series of rapid-bubble-growth instabilities and the pressure drop instability. The heat flux, ratio of flow inertia to upstream compressibility, and degree of inlet liquid subcooling significantly affect the thermal-fluidic characteristics. High inlet liquid subcoolings and low heat fluxes result in time-periodic transitions between single-phase flow and flow boiling that cause large-amplitude wall temperature oscillations and a time-periodic series of rapid-bubble-growth instabilities. Low inlet liquid subcoolings result in small-amplitude thermal-fluidic oscillations and the pressure drop instability. Low flow inertia exacerbates the pressure drop instability and results in large-amplitude thermal-fluidic oscillations whereas high flow inertia reduces their severity.</div><div><br></div><div>Flow boiling experiments are then performed in a parallel channel test section consisting of two thermally isolated, heated microchannels to study the Ledinegg instability. When the flow in both channels is in the single-phase regime, they have equal wall temperatures due to evenly distributed mass flux delivered to each channel. Boiling incipience in one of the channels triggers the Ledinegg instability which induces a temperature difference between the two channels due to flow maldistribution. The temperature difference between the two channels grows with increasing power. The experimentally observed temperature excursion between the channels due to the Ledinegg instability is reported here for the first time.</div><div><br></div><div>Time-resolved characterization of flow boiling in a single microchannel is then performed during transient heating conditions. For transient heating tests, three different heat flux levels are selected that exhibit highly contrasting flow behavior during constant heating conditions: a low heat flux corresponding to single-phase flow (15 kW/m<sup>2</sup>), an intermediate heat flux corresponding to continuous flow boiling (75 kW/m<sup>2</sup>), and a very high heat flux which would cause critical heat flux if operated at this heat flux continuously (150 kW/m<sup>2</sup>). Transient testing is first conducted using a single heat flux pulse between these heat flux levels and varying the pulse time. It is observed that any step up/down in the heat flux level that induces/ceases boiling, causes the temperature to temporarily over/under-shoot the eventual steady temperature. Following the single heat flux pulse experiments, a time-periodic series of heat flux pulses is applied. A square wave heating profile is used with pulse frequencies ranging from 0.1 to 100 Hz and three different heat fluxes levels (15, 75, and 150 kW/m<sup>2</sup>). Three different time-periodic flow boiling fluctuations are observed: flow regime transitions, pressure drop oscillations, and heating pulse propagation. For heating pulse frequencies between approximately 1 and 10 Hz, the thermal and flow fluctuations are heavily coupled to the heating characteristics, forcing the pressure drop instability frequency to match the heating frequency. For heating pulse frequencies above 25 Hz, the microchannel wall attenuates the transient heating profile and the fluid essentially experiences a constant heat flux.</div><div><br></div><div>To improve our ability to predict the performance of heat sinks for two-phase operation, high-fidelity characterization of key hydrodynamic and heat transfer parameters during microchannel slug flow boiling is performed using a novel experimental test facility that generates an archetypal flow regime, devoid of flow instabilities and flow regime transitions. High-speed flow visualization images are analyzed to quantify the uniformity of the vapor bubbles and liquid slugs generated, as well as the growth of vapor bubbles over a range of heat fluxes. A method is demonstrated for measuring liquid film thickness from the visualizations using a ray-tracing procedure to correct for optical distortions. Characterization of the slug flow boiling regime that is generated demonstrates the unique ability of the facility to precisely control and quantify hydrodynamic and heat transfer characteristics.</div><div><br></div><div>This work has advanced state-of-the-art technologies for the thermal management of high-heat-flux-dissipation devices by providing an improved understanding on the effects of transient and non-uniform heating on flow boiling and an experimental method for the validation of physics-based flow boiling modeling.</div>
26

Micro PIV and Numerical Investigation of a Micro-Couette Blood Flow

Mehri, Rym 22 June 2012 (has links)
The purpose of this thesis is to design a physical microchannel model for micro-Couette blood flow that provides constant and controlled conditions to study and analyze Red Blood Cell (RBC) aggregation. The innovation of this work is that the Couette blood flow is created by the motion of a second fluid with different properties, thereby entraining the blood. The experimental work is coupled with three-dimensional numerical simulations performed using a research Computational Fluid Dynamic (CFD) Solver, Nek5000, based on the spectral element method, while the experiments are conducted using a micro Particle Image Velocimetry (μPIV) system with a double frame CCD camera and an inverted laser imaging microscope. The design of the channel (150 × 33 μm and 170 × 64 μm microchannels) is based on several parameters determined numerically, such as the velocity and viscosity ratios and the degree of miscibility between the fluids, and the resulting configurations are fabricated in the laboratory using standard photolithography methods. The microchannel designed numerically is then tested experimentally, first, with a Newtonian fluid (glycerol), then with RBC suspensions to be compared to the simulations results. It was found that, numerically, using a velocity ratio of 4 between the two fluids, a third of the channel thickness corresponds to the blood layer. Within that range, it can be concluded, that the velocity profile of the blood layer is approximately linear as confirmed by experimental tests, resulting in the desired profile to study RBC aggregation in controlled conditions. The effect of several parameters, such as the hematocrit and the shear rate, on the RBC aggregates and the velocity profile is investigated, through experiments on the RBC suspensions. The final goal of this research is to ensure the compatibility of the results between the experiments and the Newtonian numerical model for several ranges of shear rate with the future intention of finding an accurate method to be able to quantitatively analyze aggregates and determine the number of RBC in each aggregate depending on the flow conditions (the shear rate).
27

Investigation of Two-phase Microchannel Flow and Phase Equilibria in Micro Cells for Applications to Enhanced Oil Recovery

Foroughi, Hooman 21 August 2012 (has links)
The viscous oil-water hydrodynamics in a microchannel and phase equilibria of heavy oil and carbon dioxide gas have been investigated in connection with the enhanced recovery of heavy oil from petroleum reservoirs. The oil-water flow was studied in a circular microchannel made of fused silica with an I.D. of 250 µm. The viscosity of the silicone oil (863 mPa.sec) was close to that of the gas-saturated heavy oil in reservoirs. The channel was always initially filled with the oil. Two different sets of experiments were conducted: continuous oil-water flow and immiscible displacement of oil by water. For the case of continuous water and oil injection, different types of liquid-liquid flow patterns were identified and a flow pattern map was developed based on Reynolds, Capillary and Weber numbers. Also, a simple correlation for pressure drop of the two phase system was developed. In the immiscible displacement experiments, the water initially formed a core-annular flow pattern, i.e. a water core surrounded by a viscous oil film. The initially symmetric flow became asymmetric with time as the water core shifted off centre and also the waves at the oil-water interface became asymmetric. A linear stability analysis for core-annular flow was also performed. A characteristic equation which predicts the growth rate of perturbations as a function of the core radius, Reynolds number, and viscosity and density ratios of the two phases was developed. Also, two micro cells for gas solubility measurements in oils were designed and constructed. The blind cell had an internal volume of less than 2 ml and the micro glass cell had a volume less than 100 µl. By minimizing the cell volume, measurements could be made more quickly. The CO2 solubility was determined in bitumen and ashphaltene-free bitumen samples to show that ashphaltene has a negligible effect on CO2 solubility.
28

Investigation of Two-phase Microchannel Flow and Phase Equilibria in Micro Cells for Applications to Enhanced Oil Recovery

Foroughi, Hooman 21 August 2012 (has links)
The viscous oil-water hydrodynamics in a microchannel and phase equilibria of heavy oil and carbon dioxide gas have been investigated in connection with the enhanced recovery of heavy oil from petroleum reservoirs. The oil-water flow was studied in a circular microchannel made of fused silica with an I.D. of 250 µm. The viscosity of the silicone oil (863 mPa.sec) was close to that of the gas-saturated heavy oil in reservoirs. The channel was always initially filled with the oil. Two different sets of experiments were conducted: continuous oil-water flow and immiscible displacement of oil by water. For the case of continuous water and oil injection, different types of liquid-liquid flow patterns were identified and a flow pattern map was developed based on Reynolds, Capillary and Weber numbers. Also, a simple correlation for pressure drop of the two phase system was developed. In the immiscible displacement experiments, the water initially formed a core-annular flow pattern, i.e. a water core surrounded by a viscous oil film. The initially symmetric flow became asymmetric with time as the water core shifted off centre and also the waves at the oil-water interface became asymmetric. A linear stability analysis for core-annular flow was also performed. A characteristic equation which predicts the growth rate of perturbations as a function of the core radius, Reynolds number, and viscosity and density ratios of the two phases was developed. Also, two micro cells for gas solubility measurements in oils were designed and constructed. The blind cell had an internal volume of less than 2 ml and the micro glass cell had a volume less than 100 µl. By minimizing the cell volume, measurements could be made more quickly. The CO2 solubility was determined in bitumen and ashphaltene-free bitumen samples to show that ashphaltene has a negligible effect on CO2 solubility.
29

Improving Small Scale Cooling of Mini-Channels using Added Surface Defects

Tullius, Jami 16 September 2013 (has links)
Advancements in electronic performance lead to a decrease in device size and an increase in power density. Because of these changes, current cooling mechanisms for electronic devices are beginning to be ineffective. Microchannels, with their large heat transfer surface area to volume ratio, cooled with either gas or liquid coolant, have shown some potential in adequately maintaining a safe surface temperature. By modifying the walls of the microchannel with fins, the cooling performance can be improved. Using computational fluid dynamics software, microfins placed in a staggered array on the bottom surface of a rectangular minichannel are modeled in order to optimize microstructure geometry and maximize heat transfer dissipation through convection from a heated surface. Fin geometry, dimensions, spacing, height, and material are analyzed. Correlations describing the Nusselt number and the Darcy friction factor are obtained and compared to recent studies. These correlations only apply to short fins in the laminar regime. Triangular fins with larger fin height, smaller fin width, and spacing double the fin width maximizes the number of fins in each row and yields better thermal performance. Once the effects of microfins were found, an experiment with multi-walled carbon nanotubes (MWNTs) grown on the surface were tested using both water and Al2O3/H2O nanofluid as the working medium. Minichannel devices containing two different MWNT structures – one fully coated surface of MWNTs and the other with a circular staggered fin array of MWNTs - were tested and compared to a minichannel device with no MWNTs. It was observed that the sedimentation of Al2O3 nanoparticles on a channel surface with no MWNTs increases the surface roughness and the thermal performance. Finally, using the lattice Boltzmann method, a two dimensional channel with suspended particles is modeled in order to get an accurate characterization of the fluid/particle motion in nanofluid. Using the analysis based on an ideal fin, approximate results for nanofluids with increase surface roughness was obtained. Microchannels have proven to be effective cooling systems and understanding how to achieve the maximum performance is vital for the innovation of electronics. Implementation of these modified channel devices can allow for longer lasting electronic systems.
30

Simulation of three-dimensional laminar flow and heat transfer in an array of parallel microchannels

Mlcak, Justin Dale 15 May 2009 (has links)
Heat transfer and fluid flow are studied numerically for a repeating microchannel array with water as the circulating fluid. Generalized transport equations are discretized and solved in three dimensions for velocities, pressure, and temperature. The SIMPLE algorithm is used to link pressure and velocity fields, and a thermally repeated boundary condition is applied along the repeating direction to model the repeating nature of the geometry. The computational domain includes solid silicon and fluid regions. The fluid region consists of a microchannel with a hydraulic diameter of 85.58μm. Independent parameters that were varied in this study are channel aspect ratio and Reynolds number. The aspect ratios range from 0.10 to 1.0 and Reynolds number ranges from 50 to 400. A constant heat flux of 90 W/cm2 is applied to the northern face of the computational domain, which simulates thermal energy generation from an integrated circuit. A simplified model is validated against analytical fully developed flow results and a grid independence study is performed for the complete model. The numerical results for apparent friction coefficient and convective thermal resistance at the channel inlet and exit for the 0.317 aspect ratio are compared with the experimental data. The numerical results closely match the experimental data. This close matching lends credibility to this method for predicting flows and temperatures of water and the silicon substrate in microchannels. Apparent friction coefficients linearly increase with Reynolds number, which is explained by increased entry length for higher Reynolds number flows. The mean temperature of water in the microchannels also linearly increases with channel length after a short thermal entry region. Inlet and outlet thermal resistance values monotonically decrease with increasing Reynolds number and increase with increasing aspect ratio. Thermal and friction coefficient results for large aspect ratios (1 and 0.75) do not differ significantly, but results for small aspect ratios (0.1 and 0.25) notably differ from results of other aspect ratios.

Page generated in 0.0925 seconds