• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 23
  • 14
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 164
  • 57
  • 51
  • 50
  • 40
  • 28
  • 19
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Geometric optimisation of heat transfer in channels using Newtonian and non-Newtonian fluids

Stocks, Marc Darren January 2012 (has links)
The continual advance in manufacturing processes has resulted in significantly more compact, high performance, devices. Consequently, heat extraction has become the limiting factor, and of primary concern. Therefore, a substantial amount of research has been done regarding high efficiency micro heat exchangers, employing novel working fluids. This dissertation numerically investigated the thermal behaviour of microchannel elements cooled by Newtonian and non-Newtonian fluids, with the objective of maximising thermal conductance subject to constraints. This was done, firstly, for a two-dimensional simple microchannel, and secondly, for a three-dimensional complex microchannel. A numerical model was used to solve the governing equations relating to the flow and temperature fields for both cases. The geometric configuration of each cooling channel was optimised for Newtonian and non-Newtonian fluids, at a fixed inlet velocity and heat transfer rate. In addition, the effect of porosity on thermal conductance was investigated. Geometric optimisation was employed to the simple and complex microchannels, whereby an optimal geometric ratio (height versus length) was found to maximise thermal conductance. Moreover, analysis indicated that the bifurcation point of the complex microchannel could be manipulated to achieve a higher thermal conductance. In both cases, it was found that the non-Newtonian fluid characteristics resulted in a significant variation in thermal conductance as inlet velocity was increased. The ii characteristics of a dilatant fluid greatly reduced thermal conductance on account of shear-thickening on the boundary surface. In contrast, a pseudoplastic fluid showed increased thermal conductance. A comparison of the simple and complex microchannel showed an improved thermal conductance resulting from greater flow access to the conductive area, achieved by the complex microchannel. Therefore, it could be concluded that a complex microchannel, in combination with a pseudoplastic working fluid, substantially increased the thermal conductance and efficiency, as opposed to a conventional methodology. / Dissertation (MEng)--University of Pretoria, 2012. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
42

Accelerated Corrosion Test with Operation Simulation of All-Aluminum Microchannel Heat Exchangers

Vaughan, Haydn 05 1900 (has links)
The HVAC&R industry is looking to transition from copper-aluminum heat exchangers to all-aluminum microchannel technology. The want for the transition stemmed from seeing the performance improvement of all-aluminum microchannel radiators in the automotive industry. Applications differ between the two industries; therefore, applying this technology for HVAC&R use must be validated. Research towards operating modes of an all-aluminum heat exchanger in a defined corrosive environment will provide the industry with a better understanding of heat exchanger design and heat exchanger material selection. The worth in this is preventing overdesign and producing more efficient heat exchangers. Furthermore, ASHRAE members and the corrosion community will find value in a defined corrosion system and corrosion test procedure. The information gained through past research has progressed assessment of material performance; however, the methods improperly simulate and expedite natural weathering. The most common method being used is the ASTM (American Society of Testing Materials) Sea Water Acetic Acid Test. The research discussed in this paper was focused on improving a standard corrosion system by implementing system modifications to simulate heat exchanger operation while performing a modified wet-dry cyclic test (e.g. ASTM G85 Annex 5). The goal is to produce results that are more representative of natural corrosion behavior and its forms. Current results were gathered from five of ten samples that underwent initial testing. Finally, possible improvements towards the chamber system and the test method, including the salt solution, are discussed.
43

Transport Enhancement of Rate-Limited Chemical Reactions via Pt-Decorated, Carbon Nanotube Microarray Membranes

Marr, Kevin M 01 July 2015 (has links) (PDF)
Rate limited chemical reactions can be enhanced by improving the mass transport of the suspended analyte to the catalytic (or electrocatalytic) surface. While many attempts have been made to enhance this mass transport, these approaches are limited to utilizing only two enhancement methods – increasing available catalytic surface area, and increasing the flow of analyte in solution. Flow through high aspect ratio microstructures, however, would provide additional mass transport enhancement via boundary layer confinement. Platinum functionalized carbon nanotube microarray membranes (Pt-CNT-MMs) offer enhanced mass transport via all three methods, and were fabricated for demonstration in a H2O2 sample system, for which propulsion and chemical sensing applications were investigated. Propulsion testing of Pt-CNT-MM samples demonstrated thrust typically required for MUV propulsion, while achieving high H2O2 fuel utilization. Also, the proposed approach minimizes component exposure to the environment and is comprised of a simple, static architecture relative to other micro-propulsion systems. Moreover, it was shown that additional thrust is attainable by further enhancing the introductory rate of the H2O2 fuel to the Pt-CNT-MMs, which would effectively increase the locomotive capability of this propulsion system. Pt-CNT-MMs used for chemical sensing of H2O2 likewise demonstrated favorable performance. Initial studies revealed that the molar flux achieved for a Pt-CNT-MM sample in a through-flow environment (50 [µL s-1]) was approximately a ten-fold increase over that achieved in a stirred environment (150 [rpm]). This ten-fold increase in molar flux can be attributed to both an increase in exposed electrocatalytic surface area, as well as increase in boundary layer confinement. Furthermore, comparison of sensed molar flux to calculated molar flux for through-flow conditions revealed that Pt-CNT-MMs can achieve near-complete H2O2 oxidation within the flowrate range studied. Additionally, chronoamperometric testing of a Pt-CNT-MM sample demonstrated a sensitivity toward H2O2 of 9.18 [mA mM-1 cm-2], over one hundred times that of the GluOx/Pt-SWCNT/PAA structures referenced herein (0.0724 [mA mM-1 cm-2]).1 These findings suggest that mass transport enhancement, achieved by Pt-CNT-MMs applied in through-flow environments, heightens the performance achieved in rate-limited chemical reactions. Specifically, Pt-CNT-MMs demonstrate high fuel utilization in H2O2 based propulsion applications, as well as offer a highly sensitive preliminary structures for non-invasive glucose sensing.
44

Microfluidic Electro-osmotic Flow Pumps

Edwards, John Mason 19 November 2007 (has links) (PDF)
The need for miniaturized, portable devices to separate and detect unknown compounds has greatly multiplied, leading to an increased interest in microfluidics. Total integration of the detector and pump are necessary to decrease the overall size of the microfluidic device. Using previously developed thin film technologies, an electroosmotic flow (EOF) pump was incorporated in a microfluidic liquid chromatography device. An EOF pump was chosen because of its simple design and small size. EOF pumps fabricated on silicon and glass substrates were evaluated. The experimental flow rates were 0.19-2.30 microliters/minute for 40-400 V. The theoretical pump efficiency was calculated along with the generated mechanical power by various pump shapes to elucidate more efficient pump designs. To better understand the EOF on plasma enhanced chemical vapor deposition (PECVD) silicon dioxide, the zeta potential was investigated. PECVD oxide is amorphous and less dense than thermal silicon dioxide, which slightly changes the zeta potential. Zeta potentials were found for pH values from 2.6 to 8.3. Also, surface defects that affect the zeta potential were observed, and procedures to detect and prevent such defects were proposed. Finally, surface modifications to the microfluidic device were attempted to demonstrate that thin film EOF pumps can be used in the liquid chromatographic separation of mixtures. The microfluidic separation channel was coated with chlorodimethyloctadecylsilane, however, due to problems with channel filling and reservoir adhesives, separation was not achieved. The use of new adhesives and external pumps were proposed to resolve these problems for future testing. Also new methods to combine EOF pumps with microfluidic channels and on-chip detectors were suggested.
45

Design and Fabrication of Out-of-Plane Silicon Microneedles with Integrated Hydrophobic Microchannels

Diehl, Michael S. 15 August 2007 (has links) (PDF)
Microfabricated needles have the potential for inexpensive drug delivery without pain. The ability to deliver medication painlessly to patients will someday be not just hoped for but expected by the general public. The commercialization of this technology will also lead to other valuable technologies, such as systems that continually monitor and control insulin or other drugs in diabetic patients. This research presents fabrication procedures developed to produce pyramidal-shaped microneedles with microchannels that will allow for fluid delivery. The microchannels are etched into the substrate surface of a [100] silicon wafer using inductively coupled plasma etching. After the channel etch a layer of silicon nitride is deposited onto the inner walls of the microchannels and on the surface of the substrate. The nitride on the substrate surface provides the hard mask necessary to etch the microneedles, which are wet etched in a bath of potassium hydroxide (KOH). The selectivity of the KOH on [100] silicon is such that octagonal shaped pyramids are etched into the surface of the wafer. The pyramids are aligned with the previously etched microchannels to allow for needles with channels running through them. This research presents the first needles demonstrated with drug delivery channels running through the robust pyramidal needle shape. In addition to the microchannel/microneedle fabrication procedure, microchannels were developed with inner structures as a method of creating hydrophobic surfaces on the inner walls of the channels. It was found that the channels developed had far too much variability in the diameter to accurately create a measurable reduction in flow; however, a loss coefficient was calculated showing increased flow rates in hydrophobically coated microchannels when hydrophobic structures are incorporated into the channel design. It was also discovered that a hydrophobic coating, typically used to increase flow rates through a channel, can impede flow rate. There was no evidence found to suggest that hydrophobically coated microchannels of this size, with or without structures, will yield higher flow rates than non-coated microchannels.
46

Fabrication and characterization of dexibuprofen nanocrystals using microchannel fluidic reactor

Khan, J., Bshir, S., Khan, M.A., Mohammad, Mohammad A., Isreb, Mohammad 06 November 2019 (has links)
Yes / Purpose: Dexibuprofen is an enantiomer of ibuprofen with low bioavailability which results from its hydrophobic nature. Nanosuspensions have developed a podium to solve the in vitro dissolution problem that frequently occurs in current research. Materials and methods: The drug and polymer solutions were mixed in a microchannel fluid reactor and the successive embryonic nanosuspension was decanted into a vial having the polymer solution. The impact of different process and formulation parameters including inlet angle, antisolvent and solvent flow rate(s), mixing time, drug concentration, polymer type and concentration was evaluated. Results and discussion: Stable dexibuprofen nanocrystals with a particle size of 45±3.0 nm and polydispersity index of 0.19±0.06 were obtained. Differential scanning calorimetry and powder X-ray diffraction confirmed the crystallinity. The key parameters observed were inlet angle 10°, antisolvent to solvent volume of 2.0/0.5 mL/min, 60 minutes mixing with 5 minutes sonication, Poloxamer-407 with a concentration of 0.5% w/v and drug concentration (5 mg/mm). The 60-day stability studies revealed that the nanocrystals were stable at 4°C and 25°C. The scanning electron microscopy and transmission electron microscopy images showed crystalline morphology with a homogeneous distribution. Conclusion: Stable dexibuprofen nanocrystals with retentive distinctive characteristics and having marked dissolution rate compared to raw and marketed formulations were efficiently fabricated. In future perspectives, these nanocrystals could be converted to solid dosage form and the process can be industrialized by chemical engineering approach
47

Heat Transfer in Electroosmotic Flow of Power-Law Fluids in Micro-Channel

Bakaraju, Omkareshwar Rao January 2009 (has links)
No description available.
48

Numerical Simulation of the Steady-State, Thermal-Hydraulic Performance of Microchannel and Minichannel Evaporators with Headers and Louvered Fins

Gossard, Justin 12 December 2011 (has links)
No description available.
49

A SPIRALLY-ROLLED FLEXIBLE POLYMER TUBE INTEGRATED WITH MICROSENSORS AND MICROFLUIDIC DEVICES FOR MULTIFUNCTIONAL SMART MICROCATHETERS

LI, CHUNYAN January 2007 (has links)
No description available.
50

Enabling Validation of a CubeSat Compatible Wind Sensor

Williams, Jon A. 16 August 2017 (has links)
The Ram Energy Distribution Detector (REDD) is a new CubeSat-compatible space science instrument that measures neutral wind characteristics in the upper atmosphere. Neutral gas interactions with plasma in the ionosphere/thermosphere are responsible for spacecraft drag, radio frequency disturbances such as scintillation, and other geophysical phenomena. REDD is designed to collect in-situ measurements within this region of the atmosphere where in-flight data collection using spacecraft has proven particularly challenging due to both the atmospheric density and the dominating presence of highly reactive atomic oxygen (AO). NASA Marshall Space Flight Center has a unique AO Facility (AOF) capable of simulating the conditions the sensor will encounter on orbit by creating a supersonic neutral beam of AO. Collimating the beam requires an intense magnetic field that creates significant interference for sensitive electronic devices. REDD is undergoing the final stages of validation testing in the AOF. In this presentation, we describe the LabVIEW-automated system design, the measured geometry and magnitude of the field and the specially designed mount and passive shielding that are utilized to mitigate the effects of the magnetic interference. / Master of Science

Page generated in 0.0628 seconds