• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 39
  • 15
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 55
  • 50
  • 41
  • 37
  • 35
  • 35
  • 34
  • 34
  • 25
  • 24
  • 21
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Evaluation and Redesign of a Thermal Compression Evaporator

Day, Benjamin Marc 15 May 2009 (has links)
Evaporators separate liquids from solutions. For maximum efficiency, designers reduce the temperature difference between the heating and heated media using multiple-stage evaporators. This efficiency requires increased size and bulk. A vendor claimed its thermal compression evaporator achieved high efficiency with only two stages. It did not function as claimed. This project investigated the evaporator's design to identify its problems and propose an alternative design with a minimized footprint. The analysis showed theoretical flaws and design weaknesses in the evaporator, including violation of the first law of thermodynamics. An alternative thermal compressor design was created through computational fluid dynamics using spreadsheet methods developed in house, aided by the software product FLUENT. Detailed component sizing was done using the software product HYSYS. The proposed redesign achieved four to one efficiency with two stage thermal compression, using one half of the space of a traditional system of similar performance.
2

Humidification in Evaporative Power Cycles

Dalili, Farnosh January 2003 (has links)
Evaporative gas turbine cycles (EvGT) show an exceptionalexhaust heat recovery potential, which makes them a strongcompetitor to other advanced gas turbine cycles, especiallyfrom small to intermediate sizes. Evaporative gas turbines aredistinguished by humidifying the working fluid beforecombustion at temperatures below the boiling point of water;and the heat required for evaporation of water is partly takenout of the exhaust gas. Thus, humidification is a key operationin these cycles. This thesis investigates, both theoreticallyand experimentally, two alternative approaches tohumidification: the packed-bed humidification tower and thetubular humidifier. Both these equipments involvecountercurrent contact between water and the working fluid.Humidifier design criteria are developed and criticalparameters such as flooding, wetting rate and entrainment arediscussed. The experimental parts were carried out on thepacked-bed tower in the EvGT pilot plant, and on a tubularhumidifier test rig especially erected for this purpose. Thetheoretical models were confirmed by the experiments. The height of a transfer unit, necessary for designingpacked beds, was calculated for the packing employed in theEvGT pilot plant. It was found that the data provided by themanufacturer may be used with minor corrections. The tubular test rig operated satisfactorily delivering hothumid air. The theoretical models coincided well with theexperimental results, verifying the design criteria developedhere. The heat transfer calculations indicated that mostresistance to heat transfer is on the exhaust gas side. Thus, asurface extended tube (Sunrod) was used in the test rig. Itcould be concluded that the tubular humidifier is a strongalternative to the packed-bedtower, especially in smallhigh-pressure gas turbines. Furthermore, the importance of the non-ideality of theair-water vapor mixture in modeling evaporative cycles wasfirst highlighted in this work. Through applying realthermodynamic properties of air-water vapor mixtures in cyclecalculations, it was found that the compressed air contains ahigher amount of moisture than indicated by the ideal gasmixture model. This affects the design of the heat recoverysystem and cannot be neglected. <b>Key words:</b>evaporative gas turbine, indirect-fired gasturbine, humidification, packed bed, tubular humidifier,evaporator, saturator.
3

Micro loop heat pipe evaporator coherent pore structures

Alexseev, Alexandre Viktorovich 17 February 2005 (has links)
Loop heat pipes seem a promising approach for application in modern technologies where such thermal devices as cooling fans and radiators cannot satisfy overall requirements. Even though a loop heat pipe has a big potential to remove the thermal energy from a high heat flux source, the heat removal performance of heat pipes cannot be predicted well since a first principles of evaporation has not been established. An evaporation model based on statistical rate theory has been recently suggested by Ward and developed for a single pore by Oinuma. A loop heat pipe with coherent pore wick structure has been proposed as a design model. To limit product development risk and to enhance performance assurance, design model features and performance parameters have been carefully reviewed during the concept development phase and have been deliberately selected so as to be well-founded on the limited existing loop heat pipe knowledge base. A first principles evaporation model has been applied for evaporator geometry optimization. A number of iteration calculations have been performed to satisfy design and operating limitations. A set of recommendations for design optimization has been formulated. An optimal model has been found and proposed for manufacture and experimental investigation.
4

Humidification in Evaporative Power Cycles

Dalili, Farnosh January 2003 (has links)
<p>Evaporative gas turbine cycles (EvGT) show an exceptionalexhaust heat recovery potential, which makes them a strongcompetitor to other advanced gas turbine cycles, especiallyfrom small to intermediate sizes. Evaporative gas turbines aredistinguished by humidifying the working fluid beforecombustion at temperatures below the boiling point of water;and the heat required for evaporation of water is partly takenout of the exhaust gas. Thus, humidification is a key operationin these cycles. This thesis investigates, both theoreticallyand experimentally, two alternative approaches tohumidification: the packed-bed humidification tower and thetubular humidifier. Both these equipments involvecountercurrent contact between water and the working fluid.Humidifier design criteria are developed and criticalparameters such as flooding, wetting rate and entrainment arediscussed. The experimental parts were carried out on thepacked-bed tower in the EvGT pilot plant, and on a tubularhumidifier test rig especially erected for this purpose. Thetheoretical models were confirmed by the experiments.</p><p>The height of a transfer unit, necessary for designingpacked beds, was calculated for the packing employed in theEvGT pilot plant. It was found that the data provided by themanufacturer may be used with minor corrections.</p><p>The tubular test rig operated satisfactorily delivering hothumid air. The theoretical models coincided well with theexperimental results, verifying the design criteria developedhere. The heat transfer calculations indicated that mostresistance to heat transfer is on the exhaust gas side. Thus, asurface extended tube (Sunrod) was used in the test rig. Itcould be concluded that the tubular humidifier is a strongalternative to the packed-bedtower, especially in smallhigh-pressure gas turbines.</p><p>Furthermore, the importance of the non-ideality of theair-water vapor mixture in modeling evaporative cycles wasfirst highlighted in this work. Through applying realthermodynamic properties of air-water vapor mixtures in cyclecalculations, it was found that the compressed air contains ahigher amount of moisture than indicated by the ideal gasmixture model. This affects the design of the heat recoverysystem and cannot be neglected.</p><p><b>Key words:</b>evaporative gas turbine, indirect-fired gasturbine, humidification, packed bed, tubular humidifier,evaporator, saturator.</p>
5

HEAT PUMP AND AIR CONDITIONING SYSTEM ANALYSIS BASED ON VARIABLE SPEED COMPRESSOR

Zhang, Hao January 2010 (has links)
Experiments were carried out to investigate the effect of ambient air temperatures on the heat pump performance using a variable speed compressor. Ambient air temperatures were varied from 40 to 60 °F to simulate different seasons. The compressor frequencies of 45 Hz, 50 Hz, 55 Hz, and 60 Hz were studied to determine the optimal frequency under various heating loads. The investigation was carried out by showing the compressor power input, heating output, and coefficient of performance for each case. Thermal cycle analysis along with the heat exchanger theory was used to analyze the system energy balance, heat transfer rates, p-h diagrams, and coefficient of performance. The overall heat transfer coefficients were also determined for both the evaporator and the condenser. Only the capillary tube was used to regulate the refrigerant flow rate. The variable speed compressor system used in this study will help save energy when compared with the traditional steady speed system. The variable speed compressor system will hopefully provide a more comfortable and steady indoor temperature than the traditional system, which is controlled by only an on-off switch. The speed controlled compressor system proposed we believe will help saving more energy than traditional steady speed system. The variable speed compressor system will hopefully provide a more comfort and steady indoor temperature than the traditional system which is controlled by one switch. It is believed that the variable speed compressor system may allow the indoor temperature air to be steady-going and prevent the switch working frequently. / Mechanical Engineering
6

Thermal and flow characteristics of an electrohydrodynamically enhanced capillary evaporator

Komeili, Behrooz January 2007 (has links)
<p> Experimental investigations have been conducted for an Electrohydrodynamically enhanced capillary evaporator (EHD-ECE) for enhancement of liquid evaporation, hence the flow rate. A capillary evaporator has a liquid channel inlet and a vapour channel exit. Inside the evaporator is a porous media that separates the liquid and vapour, which is also responsible for the capillary action. When an external electric field is applied inside the liquid side of the evaporator, the capillary action may be enhanced due to external body forces. Voltage was applied to the 3.lmm electrode, in the centre axis of the evaporator liquid channel. The environmentally friendly HFC-134a is used as the working fluid. The coaxial cylindrical evaporator centre is liquid filled and surrounded by a porous polyethylene wick, where the vapour channels are located on the other side of the wick. Heat is applied to the outer diameter of the evaporator. Experiments were conducted for applied heat loads from 0 to 80W and applied electric fields of de voltages from 0 to -5kV and 5kV, as well as frequencies ranging from 5-200Hz with applied pulse voltages of -IOkV and 5kV. Thermal temperatures of the liquid inlet, vapour exit, and evaporator wall, pressure difference across the evaporator, system pressure and liquid flow rates are measured and analysed. </p> <p> The experimental results show that the vapour flow rate increases with increasing applied voltages and enhancement up to a maximum of 202% was achieved when 5kV de was applied with a heat input of 80W. The polarity of the applied voltage had only a slight effect as slightly higher flow rate enhancements were observed. The vapour flow rate was also enhanced for applied pulse voltage, where the vapour flow rate increased with increasing frequencies between 50Hz to 200Hz. </p> <p> With the application of de and pulsed electric fields, the vapour flow rate due to the external body forces acting on the liquid-vapour interface are enhanced. Future work is required to fully understand the phenomena and more optimization studies are required for the EHD-CPL. </p> / Thesis / Master of Science (MSc)
7

Advanced control with semi-empirical and data based modelling for falling film evaporators

Haasbroek, Adriaan Lodewicus 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: This work focussed on a local multiple chamber falling film evaporator (FFE). The FFE is currently under operator control and experiencing large amounts of lost production time due to excessive fouling. Furthermore, the product milk dry mass fraction (WP) is constantly off specification, negatively influencing product quality, while the first effect temperature (TE1) runs higher than the recommended 70°C (this is a main cause of fouling). A two month period of historical data were received with the aim to develop a controller that could outperform the operators by keeping both control variables, WP and TE1, at desired set points while also increasing throughput and maintaining product quality. Access to the local plant was not possible and as such available process data were cleaned and used to identify two data based models, transfer function and autoregressive with exogenous inputs (ARX) models, as well as a semi-empirical-model. The ARX model proved inadequate to predict TE1 trends, with an average TE1 correlation to historical data of 0.36, compared to 0.59 and 0.74 for the transfer function and semi-empirical-models respectively. Product dry mass correlations were similar between the models with the average correlations of 0.47, 0.53 and 0.51 for the semi-empirical, transfer function and ARX models respectively. Although the semi-empirical showed the lowest WP correlation, it was offset by the TE1 prediction advantage. Therefore, the semi-empirical model was selected for controller development and comparisons. The success of the semi-empirical model was in accordance with previous research [1] [2] [3], yet other studies have concluded that ARX modelling was more suited to FFE modelling [4]. Three controllers were developed, namely: a proportional and integral (PI) controller as base case, a linear quadratic regulator (LQR) as an optimal state space alternative and finally, to make full use of process knowledge, a predictive fuzzy logic controller (PFC). The PI controller was able to offer zero offset set point tracking, but could not adequately reject a feed dry mass (WF) disturbance (as proposed and reported by Winchester [5]). The LQR was combined with a Kalman estimator and used pre-delay states. In order to offer increased disturbance rejection, the feedback gains of the disturbance states were tuned individually. The altered LQR and PFC solutions proved to adequately reject all modelled disturbances and outperform a cascade controller designed by Bakker [6]. The maximum deviation in WP was a fractional increase of 0.007 for LQR and 0.005 for FPC, compared to 0.012 for PI and 0.0075 for the cascade controller [6] (WF disturbance fractional increase of 0.01). All the designed controllers managed to reduce the standard deviation of operator controlled WP and TE1 by at least 700% and 450%, respectively. The same level of reduction was seen for maximum control variable deviations (370%), the integral of the absolute error (300%) and the mean squared error (900%). All these performance metrics point to the controllers performing better than the operator based control. In order to prevent manipulated variable saturation and optimise the feed flow rate (F1), a fuzzy feed optimiser (FFO) was developed. The FFO focussed on maximising the available evaporative capacity of the FFE by optimising the motive steam pressure (PS), which supplied heat to the effects. By using the FFO for each controller the average feed flow rate was increased by 4.8% (±500kg/h) compared to the operator control. In addition to flow rate gain, the controllers kept TE1 below 70°C and WP on specification. As such, the overall product quality also increased as well as decreasing the down time due to less fouling. / AFRIKAANSE OPSOMMING: Hierdie projek het op ‘n vallende film verdamper (VFV) gefokus. Die VFV word tans beheer deur operateurs en ondervind groot hoeveelhede verlore produksie tyd a.g.v oormatige aangroeisels. Die vorming van aangroeisels is grootliks te danke aan die eerste effek temperatuur (TE1) wat gereeld 70°C oorskrei. Die produk droë massa fraksie (WP) is ook telkens nie op die gewenste vlak nie, wat produk kwaliteit negatief beinvloed. Data, wat oor ‘n twee maand periode strek, was verkry met die doelstelling om ‘n beheerder te ontwerp wat beter sou vaar as die operateurs, deur beide WP en TE2 om ‘n nou stelpunt te beheer. Ter selfde tyd moet die ontwerpte beheerder die produksie tempo en produk kwaliteit verhoog. Geen toegang tot die plaaslikke VFV was moontlik nie, dus was die data skoongemaak en gebruik om twee data gebasseerde modelle te identifiseer, nl. oordragsfunksie en outoregressiwe met eksogene insette (ORX) modelle, asook ‘n semi-empiriese model. Die ORX model kon nie TE1 goed voorspel nie, met ‘n korrelasie faktor (tot die historiese data) van 0.36, vergeleke met die 0.59 en 0.74 van die oordragsfunksie en semi-empiriese modelle onderskeidelik. WP korrelasie faktore was meer konstant tussen die modelle, met waardes van 0.47, 0.53 en 0.51 vir die semi-empiriese, oordragsfunskie en ORX modelle onderskeidelik. Alhoewel die semi-empiriese model die laagste WP korrelasie vertoon het, was die tekortkoming vergoed deur die beter TE1 voorspelling. Gevolglik was die semi-empiriese model gebruik vir beheerder ontwerp en vergelyking. Die sukses van die semiempiriese model stem ooreen met vorige studies [1] [2] [3], tog het ander studies al bevind dat die ORX model beter gepas is vir die VFV proses [4]. Drie beheerders was ontwikkel, nl. ‘n proporsionele en integreerder (PI) beheerder as basis geval, ‘n liniêre kwadratiese reguleerder (LKR) as optimale toestands beheer alternatief en laastens ‘n voorspellende wasige logika beheerder (VWB) om volle gebruik van proseskennis te maak. Die PI beheerder kon foutlose volging van die stelpunte lewer, maar kon nie ‘n inset voer droë massa fraksie (WF) versteuring (soos voorgestel en weergegee deur Winchester [5]) na wense verwerp nie. Die LKR was saamgevoeg met ‘n Kalman afskatter en het gebruik gemaak van onvertraagde toestande. Die versteuringstoestande was individueel verstel om beter versteurings verweping te weeg te bring. Die aangepaste LKR en VWB kon beide die WF versteuring verwerp en het beter gevaar as ‘n kaskade beheer oplossing wat deur Bakker [6] ontwerp was. Die WP afwyking is beperk tot ‘n fraksie droë masse verandering van 0.007 vir LKR en 0.005 vir VWB, vergeleke met die afwykings van 0.012 vir die PI beheerder asook die 0.0075 van die kaskade beheerder [6]. Die ontwerpte beheerder kon ook die standaard afwyking van beide WP en TE1 met ten minste 700% en 450% onderskeidelik verminder. Soortgelyke verbeterings was gesien vir die maksimum beheer veranderlikke afwyking (370%), die integraal van die absolute fout (300%) en die gemiddelde fout (900%). Dus het die ontwerpte beheerders wesenlik verbeter op die operateur beheer. Ten einde om gemanipuleerde veranderlikke versadiging te voorkom, asook die voer vloei (V1) te optimiseer, was ‘n wasige logika optimiseerder (WVO) ontwerp. Die WVO het die beskikbare verdampingskapasiteit ten volle benut deur te sorg dat die stoom druk (PS), wat energie verskaf vir verdamping, ge-optimiseerd bly. ‘n Gemiddelde V1 stygging van 4.8% (±500kg/uur), vergeleke met operateur beheer, is waargeneem. Al die beheerders kon steeds die WP en TE1 stelpunte volg en dus TE1 onder 70°C hou (wat verminderde vormasie van aangroeisels tot gevolg gehad het). Daarom het die produk kwailiteit verhoog en die verlore produksie tyd verminder.
8

EXPERIMENTAL INVESTIGATION OF THE THERMAL PERFORMANCE OF VERTICAL AND ELBOW THERMOSYPHONS

Hammouda, Mohamed January 2021 (has links)
The thermal performance of two thermosyphons with different geometries was experimentally investigated in this study. The first thermosyphon utilized a 310 mm long vertical evaporator and a 385 mm long condenser section that was inclined at 5 degrees from the vertical. The second was an elbow configuration with a 140 mm long vertical evaporator and a 190 mm long condenser oriented 8 degrees from the horizontal. Both thermosyphons were made of internally grooved copper tubing with an outer diameter of 15.87 mm, wall thickness of 0.5 mm and a nominal groove height of 0.3 mm. Tests were performed over a range of input heat fluxes where the condenser was cooled by flowing water around the condenser with inlet temperature of 10°C, 20°C, and 35°C. The effects of incrementally increasing and decreasing heat flux was investigated for the elbow thermosyphon. Temperature measurements along the thermosyphon were taken when incrementally changing the heat flux from 0.5 to 11 W/m2 for the first thermosyphon and 0.3 to 6 W/m2 for the second thermosyphon. Internal flow regimes were characterized using temperature transient profiles and compared to existing flow regime maps for closed thermosyphons suggested by Smith et al. (2018: Part a and Part b) and Terdoon et al. (1997). The temperature transients along the evaporator for the first thermosyphon settled to a more uniform profile as heat flux was increased. For the second thermosyphon the temperature profiles suggested a change to a more dynamic flow in the evaporator at heat flux of approximately 6 W/m2. The elbow thermosyphon showed evidence of a significant hysteresis in the evaporator performance at moderate heat fluxes between 2 and 8 W/cm2. Comparisons were made between the two thermosyphons to study the effects of inclination angle and the feasibility of angle corrections to the Nusselt film condensation model from Guichet and Jouhara (2020). A modification to the Rohsenow condensation model from Guichet and Jouhara (2020) was recommended for the first thermosyphon showing good representation of the condenser performance. The evaporator performance results were compared to existing models from the literature. / Thesis / Master of Applied Science (MASc)
9

Contribution to the modelling of refrigeration systems / Contribution à la modélisation de systèmes de réfrigération

Cuevas Barraza, Cristian 15 December 2006 (has links)
The main objective of this study is to propose and to validate simplified models to simulate the performance of refrigeration systems. The proposed modelling approach of the system is modular: the compressor is modelled by a simple and physical model that takes into account the heat transfers and the un-matching of internal and external pressure ratio for the scroll compressors. The evaporator is modelled as a two zones heat exchanger on the refrigeration side (one for the two phases zone and the other one for superheated gas) and finally the condenser is assumed to be divided into three zones (de-superheating, two-phase and the sub-cooling). The compressor model was already developed by other author; here it is only validated using three scroll compressors and two reciprocating ones. The main differences are the conditions at which these compressors are tested: 20 bar at the supply and 40 at the exhaust. The condenser and evaporator models are the main contribution of this study. These models use the geometry and the correlation from the literature to calculate the global heat transfer coefficient on each zone. In the case of the condenser, a mean void fraction model is used to determinate the condenser subcooling as function of the refrigerant charge or vice-versa. The refrigeration system model is validated with experimental results obtained on each component and the whole system in five different test benches. The results show a very good agreement between the measured and predicted main outputs of the system.
10

Control and Optimization of Vapor Compression Cycles Using Recursive Least Squares Estimation

Rani, Avinash 2012 August 1900 (has links)
Vapor compression cycles are the primary method by which refrigeration and air-conditioning systems operate, and thus constitute a significant portion of commercial and residential building energy consumption. This thesis presents a data-driven approach to find the optimal operating conditions of a multi-evaporator system in order to minimize the energy consumption while meeting operational requirements such as constant cooling or constant evaporator outlet temperature. The experimental system used for controller evaluation is a custom built small-scale water chiller with three evaporators; each evaporator services a separate body of water, referred to as a cooling zone. The three evaporators are connected to a single condenser and variable speed compressor, and feature variable water flow and electronic expansion valves. The control problem lies in development of a control architecture that will minimize the energy consumed by the system without prior information about the system in the form of performance maps, or complex mathematical models. The control architecture explored in this thesis relies on the data collected by sensors alone to formulate a function for the power consumption of the system in terms of controlled variables, namely, condenser and evaporator pressures, using recursive least squares estimation. This cost function is then minimized to attain optimal set points for the pressures which are fed to local controllers.

Page generated in 0.2026 seconds