Spelling suggestions: "subject:"microcircuit""
1 |
Synthese der Bacteriocine Amylocyclicin A und Plantazolicin in Bacillus amyloliquefaciens FZB42Scholz, Romy 21 February 2011 (has links)
Bacillus amyloliquefaciens FZB42 ist ein grampositives Bodenbakterium. Es kann in der Rhizosphäre das Wachstum von Pflanzen fördern und durch die Produktion von Sekundärmetaboliten phytopathogene Organismen hemmen. Aus der Genomanalyse und den dazugehörigen Arbeiten war bekannt, dass Bacillus amyloliquefaciens FZB42 nicht-ribosomal je drei antimikrobielle Polyketide und Lipopeptide herstellt, sowie zwei Siderophore und das Dipeptid Bacilysin. Für Bacillus typische Lantibiotika oder große Bacteriocine wurden nicht gefunden. In dieser Arbeit wird erstmalig gezeigt, dass Bacillus amyloliquefaciens FZB42 auf ribosomale Weise antibakterielle Peptide herstellt. Zwei bisher unbekannte Bacteriocine, Amylocyclicin A und Plantazolicin, und deren dazugehörigen Gencluster konnten identifiziert und charakterisiert werden. Amylocyclicin A ist ein unmodifiziertes Peptid, dessen N- und C-Terminus kovalent verbunden sind. Es wurde der Gruppe I der zirkulären Bacteriocine zugeordnet, dessen Mitglieder sich durch schwache Homologie untereinander, aber durch wahrscheinlich ähnliche 3D-Strukturen auszeichnen. Die Masse beträgt 6381 Da und die Substanz ist stark aktiv gegen grampositive Bakterien. Das Biosynthesecluster umfasst sechs Gene für die Synthese, den Export, die Zyklisierung und die Immunität. Plantazolicin ist ein hydrophobes, stark modifiziertes Peptid aus der TOMM-Gruppe, einer Gruppe aus Microcin B17-ähnlichen Peptiden, die nach neueren Erkenntnissen verbreiteter ist, als bisher bekannt. Plantazolicin ist schwach aktiv gegen grampositive Bakterien und besitzt die Masse 1335 Da. Das Biosynthesecluster umfasst zwölf Gene, mit allen nötigen Genen für Synthese, Modifikation, Regulation, Immunität und Export. / Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Five gene clusters direct the non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide and the iron-siderophore bacillibactin. Three gene clusters direct the non-ribosomal synthesis of the antibacterial acting polyketides macrolactin, bacillaene and difficidin; in addition to the non-ribosomal synthesis of the antibacterial dipeptide bacilysin. Genes involved in ribosome-dependent synthesis of lantibiotics and other peptides are scarce. Only two incomplete gene clusters directing immunity against mersacidin and subtilin were found. In this work two ribosomally synthesized antibacterial peptides, amylocyclicin A and plantazolicin, and their corresponding gene clusters were identified. Amylocyclicin A is a circular peptide with a mass of 6381 Da and strong activity against Gram-positive bacteria. Six genes are responsible for the synthesis, maturation, export and immunity of this peptide belonging to group I of circular bacteriocins. Plantazolicin is a strongly modified hydrophobic peptide bearing a molecular mass of 1,335 Da and displaying antibacterial activity toward closely related Gram-positive bacteria. Essential modification contains the incorporation of azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide and addition of two methyl groups. Twelve genes are responsible for synthesis, modification, export and immunity of this peptide belonging to the TOMM group of thiazol/oxazol modified microcins.
|
2 |
Escherichia coli als probiotischer Wirkstoff von Arzneimitteln - Molekulare und funktionelle Charakterisierung gesundheitsfördernder StämmeZschüttig, Anke 08 August 2012 (has links) (PDF)
Aus E. coli bestehende probiotische Produkte wie Mutaflor (Ardeypharm, Herdecke) und Symbioflor 2 (SymbioPharm, Herborn) werden seit Jahrzehnten erfolgreich für die Behandlung gastroenterologischer Erkrankungen verwendet. Die Probiotika gelten aufgrund der langjährigen Erfahrung als sicher. Seit ca. 20 Jahren werden zunehmend Studien ins Leben gerufen, welche sowohl die Wirkung der Produkte klinisch bestätigen als auch die bisher unbekannten Wirkmechanismen aufklären sollen.
Das in Mutaflor enthaltene Bakterium E. coli Nissle 1917 wurde bereits erfolgversprechend in klinischen Studien zur Remissionserhaltung bei Colitis ulcerosa getestet und wird seither als therapeutische Alternative zur Standardmedikation eingesetzt. Auch die Wirkung von Symbioflor 2 bei Erwachsenen und Kindern mit Reizdarmsyndrom konnte in ersten klinischen Studien belegt werden.
Es gibt bereits zahlreiche Forschungsarbeiten mit E. coli Nissle 1917, die sich mit der molekularen Charakterisierung des Stamms befassen. Auch das Genom des Stamms wurde sequenziert. Dennoch fehlen schlüssige Argumente, welche Gene, Genprodukte und molekularen Mechanismen den probiotischen Effekt von EcN bewirken.
Im Rahmen dieser Arbeit wurde nun das Produkt Symbioflor 2 näher untersucht. Es besteht aus den sechs E. coli-Genomotypen G1/2, G3/10, G4/9, G5, G6/7 und G8, die ursprünglich aus dem Habitat eines Spenders isoliert wurden. Alle sechs Genome inklusive der insgesamt zwölf natürlich enthaltenen Plasmide wurden sequenziert, annotiert und manuell nachbearbeitet. Die sechs E. coli-Genomotypen repräsentieren zusammen das im Produkt Symbioflor 2 enthaltene Pangenom. Somit konnten genomisch kodierte Virulenz- und Fitnessfaktoren analysiert werden. Ein Vergleich mit einer Vielzahl anderer bisher sequenzierter E. coli ermöglichte eine Einordnung der Symbioflor 2 E. coli in das Cluster der apathogenen E. coli.
Unter Verwendung eines in vitro Testsystems mit humanen intestinalen Epithelzellen konnte gezeigt werden, dass die probiotischen Stämme E. coli Nissle 1917 und E. coli G3/10 im Gegensatz zu Kontrollstämmen die Adhärenz enteropathogener E. coli signifikant hemmen. In weiteren Versuchen konnten dann kleine ribosomal synthetisierte und antibakteriell wirksame Moleküle, in EcN die Mikrozine M und H47, für diesen Effekt verantwortlich gemacht werden. In der Folge wurde auch in E. coli G3/10 ein neues, bisher unbeschriebenes Mikrozin detektiert, welches Mikrozin S genannt wird. Zudem konnten vier Gene auf dem Plasmid pSYM1 lokalisiert werden, die unterschiedliche Funktionen bei der Produktion von Mikrozin S haben. Zwei der Gene kodieren am Transport beteiligte Proteine. Ein kleiner Leserahmen konnte als das Mikrozin S-kodierende Gen mcsS identifiziert werden. Ein weiteres Gen vermittelt eine Immunität gegenüber Mikrozin S. Seine Expression in einem zuvor sensitiven Stamm macht diesen resistent gegenüber der Wirkung von Mikrozin S. Erst im September 2011 erfolgte ein erster Eintrag in die NCBI-Datenbank, in dem die Gensequenz von mcsS plasmidkodiert in einer Shigelle annotiert als hypothetisches Protein aufgeführt ist. Dem Gen wurde keine Funktion zugewiesen. Wird die Expression von mcsS in dem E. coli-Laborstamm MDS42 in Abwesenheit eines Immunitätsproteins induziert, wirkt das Peptid toxisch auf die bakteriellen Zellen. Mikrozin S kann zudem anhand seiner Aminosäuresequenz und der genetischen Organisation in die Mikrozine-Klasse IIa eingeordnet werden.
Mikrozine können vielfältig verwendet werden, haben jedoch im Vergleich zu Bakteriozinen Gram-positiver Bakterien bisher zu wenig Beachtung gefunden. Anwendungsmöglichkeiten liegen in der Lebensmittelindustrie, der Human- und Veterinärmedizin, wo Mikrozin S nah verwandte Gram-negative Bakterien im Wachstum hemmen bzw. abtöten könnte. Zum Beispiel wird im Rahmen dieser Arbeit die Wirkung von E. coli Nissle 1917 und E. coli G3/10 auf enterohämorrhagische E. coli in vitro getestet. Es wird gezeigt, dass das von E. coli G3/10 gebildete Mikrozin S eine Adhärenzminderung aller verwendeten EHEC-Stämme an humane intestinale Epithelzellen vermittelt. Da EcN nur einen der vier getesteten EHEC-Stämme inhibiert, wurden Untersuchungen begonnen, die die Ursache dafür thematisieren.
Die in dieser Arbeit generierten Ergebnisse bilden die Grundlage für weitere Studien zu den in dem Produkt Symbioflor 2 enthaltenen E. coli. Zudem können umfangreiche Analysen von Mikrozin S, wie die Reinigung des Proteins, seine Produktion in großem Maßstab und die Testung von Anwendungsmöglichkeiten fortgeführt werden.
|
3 |
Escherichia coli als probiotischer Wirkstoff von Arzneimitteln - Molekulare und funktionelle Charakterisierung gesundheitsfördernder StämmeZschüttig, Anke 26 July 2012 (has links)
Aus E. coli bestehende probiotische Produkte wie Mutaflor (Ardeypharm, Herdecke) und Symbioflor 2 (SymbioPharm, Herborn) werden seit Jahrzehnten erfolgreich für die Behandlung gastroenterologischer Erkrankungen verwendet. Die Probiotika gelten aufgrund der langjährigen Erfahrung als sicher. Seit ca. 20 Jahren werden zunehmend Studien ins Leben gerufen, welche sowohl die Wirkung der Produkte klinisch bestätigen als auch die bisher unbekannten Wirkmechanismen aufklären sollen.
Das in Mutaflor enthaltene Bakterium E. coli Nissle 1917 wurde bereits erfolgversprechend in klinischen Studien zur Remissionserhaltung bei Colitis ulcerosa getestet und wird seither als therapeutische Alternative zur Standardmedikation eingesetzt. Auch die Wirkung von Symbioflor 2 bei Erwachsenen und Kindern mit Reizdarmsyndrom konnte in ersten klinischen Studien belegt werden.
Es gibt bereits zahlreiche Forschungsarbeiten mit E. coli Nissle 1917, die sich mit der molekularen Charakterisierung des Stamms befassen. Auch das Genom des Stamms wurde sequenziert. Dennoch fehlen schlüssige Argumente, welche Gene, Genprodukte und molekularen Mechanismen den probiotischen Effekt von EcN bewirken.
Im Rahmen dieser Arbeit wurde nun das Produkt Symbioflor 2 näher untersucht. Es besteht aus den sechs E. coli-Genomotypen G1/2, G3/10, G4/9, G5, G6/7 und G8, die ursprünglich aus dem Habitat eines Spenders isoliert wurden. Alle sechs Genome inklusive der insgesamt zwölf natürlich enthaltenen Plasmide wurden sequenziert, annotiert und manuell nachbearbeitet. Die sechs E. coli-Genomotypen repräsentieren zusammen das im Produkt Symbioflor 2 enthaltene Pangenom. Somit konnten genomisch kodierte Virulenz- und Fitnessfaktoren analysiert werden. Ein Vergleich mit einer Vielzahl anderer bisher sequenzierter E. coli ermöglichte eine Einordnung der Symbioflor 2 E. coli in das Cluster der apathogenen E. coli.
Unter Verwendung eines in vitro Testsystems mit humanen intestinalen Epithelzellen konnte gezeigt werden, dass die probiotischen Stämme E. coli Nissle 1917 und E. coli G3/10 im Gegensatz zu Kontrollstämmen die Adhärenz enteropathogener E. coli signifikant hemmen. In weiteren Versuchen konnten dann kleine ribosomal synthetisierte und antibakteriell wirksame Moleküle, in EcN die Mikrozine M und H47, für diesen Effekt verantwortlich gemacht werden. In der Folge wurde auch in E. coli G3/10 ein neues, bisher unbeschriebenes Mikrozin detektiert, welches Mikrozin S genannt wird. Zudem konnten vier Gene auf dem Plasmid pSYM1 lokalisiert werden, die unterschiedliche Funktionen bei der Produktion von Mikrozin S haben. Zwei der Gene kodieren am Transport beteiligte Proteine. Ein kleiner Leserahmen konnte als das Mikrozin S-kodierende Gen mcsS identifiziert werden. Ein weiteres Gen vermittelt eine Immunität gegenüber Mikrozin S. Seine Expression in einem zuvor sensitiven Stamm macht diesen resistent gegenüber der Wirkung von Mikrozin S. Erst im September 2011 erfolgte ein erster Eintrag in die NCBI-Datenbank, in dem die Gensequenz von mcsS plasmidkodiert in einer Shigelle annotiert als hypothetisches Protein aufgeführt ist. Dem Gen wurde keine Funktion zugewiesen. Wird die Expression von mcsS in dem E. coli-Laborstamm MDS42 in Abwesenheit eines Immunitätsproteins induziert, wirkt das Peptid toxisch auf die bakteriellen Zellen. Mikrozin S kann zudem anhand seiner Aminosäuresequenz und der genetischen Organisation in die Mikrozine-Klasse IIa eingeordnet werden.
Mikrozine können vielfältig verwendet werden, haben jedoch im Vergleich zu Bakteriozinen Gram-positiver Bakterien bisher zu wenig Beachtung gefunden. Anwendungsmöglichkeiten liegen in der Lebensmittelindustrie, der Human- und Veterinärmedizin, wo Mikrozin S nah verwandte Gram-negative Bakterien im Wachstum hemmen bzw. abtöten könnte. Zum Beispiel wird im Rahmen dieser Arbeit die Wirkung von E. coli Nissle 1917 und E. coli G3/10 auf enterohämorrhagische E. coli in vitro getestet. Es wird gezeigt, dass das von E. coli G3/10 gebildete Mikrozin S eine Adhärenzminderung aller verwendeten EHEC-Stämme an humane intestinale Epithelzellen vermittelt. Da EcN nur einen der vier getesteten EHEC-Stämme inhibiert, wurden Untersuchungen begonnen, die die Ursache dafür thematisieren.
Die in dieser Arbeit generierten Ergebnisse bilden die Grundlage für weitere Studien zu den in dem Produkt Symbioflor 2 enthaltenen E. coli. Zudem können umfangreiche Analysen von Mikrozin S, wie die Reinigung des Proteins, seine Produktion in großem Maßstab und die Testung von Anwendungsmöglichkeiten fortgeführt werden.
|
4 |
PEPTIDE ENGINEERING FOR DEVELOPMENT OF ANTIMICROBIALS AGAINST Mannheimia haemolytica2013 October 1900 (has links)
Mannheimia haemolytica (M. haemolytica)-induced bovine respiratory disease causes millions of dollars in economic losses to Canadian cattle industry. Contemporary management strategies built around the use of antimicrobials are proving to be increasingly unavailing and lead to drug residues in meat which may contribute to the development of multi drug resistant bacteria. Many M. haemolytica vaccines are effective in stimulating antibody responses but studies of vaccina-tion in young calves and the cattle exposed to M. haemolytica (high-risk cattle) have shown poor vaccine efficacy. Antimicrobial peptides (AMPs) may help in the management of respiratory disease caused by M. haemolytica while minimizing the risk of drug residues in animal-derived food products.
AMPs are positively charged molecules that can kill bacteria primarily through the electrostatic interactions with the anionic bacterial lipid bilayer. Since the primary target of AMPs is the bac-terial surface charge, which is evolutionarily conserved, the development of resistance towards AMPs seems less likely. These peptides hold potential to replace or reduce the use of antibiotics.
Human β-Defensin 3 (HBD3) and Microcin J25 (MccJ25) are cationic peptides that have shown good activity against many Gram-negative bacteria. Five peptides, namely native HBD3, three synthetic HBD3 analogues (28 amino acid, 20AA, and 10AA), and MccJ25 were selected for microbicidal activity against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis (SPPS).
In all the three analogue, replacement of cysteine with valine rendered them linear and increased their antibacterial activity. Minimum Bactericidal concentration (MBC) assays were performed with the final inoculum size of 1-5x105 cells/ml, with the exception of the 10AA analogue which was incubated with 104 cells/ml final inoculum size. The antimicrobial assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogue with an MBC of 50 µg/ml. MccJ25 had limited effect with an MBC greater than 100 µg/ml. The MBC value of 6.3 µg/ml achieved with the 10AA analogue is likely a result of lower final inoculum size.
AMPs have several immunomodulatory functions, and these peptides can act as chemoattractant, induce cytokine release that in turn leads to chemotaxis of monocytes and neutrophils. Since neutrophils play an important role in the pathogenesis of BRD, the chemotactic effect of HBD3, 20AA and 28AA peptides on bovine neutrophils was studied using Boyden chamber. Peripheral blood neutrophils isolated from normal healthy cattle showed chemotaxis towards HBD3 and 20AA peptides (P<0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP).
Based on these data, it can be concluded that HBD3 and its analogues showed antimicrobial ef-fects against M. haemolytica but MccJ25 had limited microbicidal activity against M. haemolytica. While HBD3 and 20AA analogue were chemotactic for bovine peripheral blood neutrophils, none of the peptides inhibited fMLP-induced migration of neutrophils. These peptides hold potential for further in vivo testing to develop them for use to manage M. haemolytica-induced respiratory disease in cattle.
|
Page generated in 0.035 seconds