• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Personal-portable Cooling Garment Based on Adsorption Vacuum Membrane Evaporative Cooling

Yang, Yifan 15 March 2011 (has links)
A cutting edge man-portable AVMEC cooling garment was demonstrated to be able to provide sufficient cooling for personnel working at mediate activity loads. Studies were first carried out in a well controlled vacuum desiccator at room temperature to elucidate the effects of several key parameters on the performance of an AVEC device, which was similar to AVMEC except that membrane was not involved. Under the best condition, an average cooling capacity of 179 W/M2 was achieved in a period of four hours and cooling continued at a slowly declining rate for another four hours afterward. The temperature of water was maintained at approximately 12.5 oC after the pseudo steady state was established. Then, it was shown that the AVMEC cooling pads were able to provide a cooling capacity of 277.4 W/m2 in a 37 oC ambient environment (incubator). The temperature of the cooling core surface was maintained in a range of 20 – 21.8 oC in the one-hour test period. No power supply was required except for the initialization stage, which took 5 minutes. Furthermore, human subject tests with or without wearing NWBC (Nuclear Warfare Biological and Chemical) suit demonstrated that, a AVMEC garment composed of 12 cooling pads were able to maintain the core body temperature of the subjects below 38.5 oC for up to 90 minutes while the subject was walking on a treadmill at a speed of 2 miles per hour in an environment of 40 oC and 50% RH (relative humidity). These results indicate that the AVMEC garment is a promising man-portable personal cooling technology.
2

Personal-portable Cooling Garment Based on Adsorption Vacuum Membrane Evaporative Cooling

Yang, Yifan 15 March 2011 (has links)
A cutting edge man-portable AVMEC cooling garment was demonstrated to be able to provide sufficient cooling for personnel working at mediate activity loads. Studies were first carried out in a well controlled vacuum desiccator at room temperature to elucidate the effects of several key parameters on the performance of an AVEC device, which was similar to AVMEC except that membrane was not involved. Under the best condition, an average cooling capacity of 179 W/M2 was achieved in a period of four hours and cooling continued at a slowly declining rate for another four hours afterward. The temperature of water was maintained at approximately 12.5 oC after the pseudo steady state was established. Then, it was shown that the AVMEC cooling pads were able to provide a cooling capacity of 277.4 W/m2 in a 37 oC ambient environment (incubator). The temperature of the cooling core surface was maintained in a range of 20 – 21.8 oC in the one-hour test period. No power supply was required except for the initialization stage, which took 5 minutes. Furthermore, human subject tests with or without wearing NWBC (Nuclear Warfare Biological and Chemical) suit demonstrated that, a AVMEC garment composed of 12 cooling pads were able to maintain the core body temperature of the subjects below 38.5 oC for up to 90 minutes while the subject was walking on a treadmill at a speed of 2 miles per hour in an environment of 40 oC and 50% RH (relative humidity). These results indicate that the AVMEC garment is a promising man-portable personal cooling technology.
3

Personal-portable Cooling Garment Based on Adsorption Vacuum Membrane Evaporative Cooling

Yang, Yifan 15 March 2011 (has links)
A cutting edge man-portable AVMEC cooling garment was demonstrated to be able to provide sufficient cooling for personnel working at mediate activity loads. Studies were first carried out in a well controlled vacuum desiccator at room temperature to elucidate the effects of several key parameters on the performance of an AVEC device, which was similar to AVMEC except that membrane was not involved. Under the best condition, an average cooling capacity of 179 W/M2 was achieved in a period of four hours and cooling continued at a slowly declining rate for another four hours afterward. The temperature of water was maintained at approximately 12.5 oC after the pseudo steady state was established. Then, it was shown that the AVMEC cooling pads were able to provide a cooling capacity of 277.4 W/m2 in a 37 oC ambient environment (incubator). The temperature of the cooling core surface was maintained in a range of 20 – 21.8 oC in the one-hour test period. No power supply was required except for the initialization stage, which took 5 minutes. Furthermore, human subject tests with or without wearing NWBC (Nuclear Warfare Biological and Chemical) suit demonstrated that, a AVMEC garment composed of 12 cooling pads were able to maintain the core body temperature of the subjects below 38.5 oC for up to 90 minutes while the subject was walking on a treadmill at a speed of 2 miles per hour in an environment of 40 oC and 50% RH (relative humidity). These results indicate that the AVMEC garment is a promising man-portable personal cooling technology.
4

Personal-portable Cooling Garment Based on Adsorption Vacuum Membrane Evaporative Cooling

Yang, Yifan January 2011 (has links)
A cutting edge man-portable AVMEC cooling garment was demonstrated to be able to provide sufficient cooling for personnel working at mediate activity loads. Studies were first carried out in a well controlled vacuum desiccator at room temperature to elucidate the effects of several key parameters on the performance of an AVEC device, which was similar to AVMEC except that membrane was not involved. Under the best condition, an average cooling capacity of 179 W/M2 was achieved in a period of four hours and cooling continued at a slowly declining rate for another four hours afterward. The temperature of water was maintained at approximately 12.5 oC after the pseudo steady state was established. Then, it was shown that the AVMEC cooling pads were able to provide a cooling capacity of 277.4 W/m2 in a 37 oC ambient environment (incubator). The temperature of the cooling core surface was maintained in a range of 20 – 21.8 oC in the one-hour test period. No power supply was required except for the initialization stage, which took 5 minutes. Furthermore, human subject tests with or without wearing NWBC (Nuclear Warfare Biological and Chemical) suit demonstrated that, a AVMEC garment composed of 12 cooling pads were able to maintain the core body temperature of the subjects below 38.5 oC for up to 90 minutes while the subject was walking on a treadmill at a speed of 2 miles per hour in an environment of 40 oC and 50% RH (relative humidity). These results indicate that the AVMEC garment is a promising man-portable personal cooling technology.
5

Physiological Responses of Men During the Continuous Use of a Portable Liquid Cooling Vest

Medina, Theresa J 12 July 2004 (has links)
Heat stress is a well documented hazard across industries. The combination of environmental conditions, work demands, and clothing contribute to heat strain. Left unchecked, heat strain causes changes in an individual's physiological state that can lead to serious and fatal conditions with little warning. Although engineering and administrative controls are the first choice to abate this hazard, they frequently are not feasible. In these cases, personal cooling is often employed. There are three main types of personal cooling: liquid, air, and passive. Each has its own advantages and disadvantages. This study focuses on continuous cooling using a portable liquid cooling system (LCS). The LCS used a vest with tubes circulating water from an ice heat sink. The experiment consisted of five males each completing seven tests in random order. The subjects wore work clothes as the control then in conjunction with a firefighter, vapor barrier, and bomb suits. Each suit was tested with and without the benefit of the LCS. All of the tests took place at 35oC dry bulb and 50% relative humidity while attempting to walk 90 minutes on a treadmill at a 300 W metabolic rate. The study found continuous use of the LCS significantly reduced heat storage (S) and the rate of rise of heart rate (rrHR), core temperature (rrTre), and mean skin temperature (rrTsk) for the firefighter and vapor barrier suits as compared to no-cooling. Although the LCS didn't significantly affect the rate of rise for physiological responses with the bomb suit, it did however, significantly increase the endurance time. Interestingly, the study also found when wearing either the vapor barrier or firefighter suits in conjunction with the LCS that the rrHR and rrTre were not significantly different from only wearing work clothes.
6

Evaluation of Four Portable Cooling Vests for Workers Wearing Gas Extraction Coveralls in Hot Environments

Johnson, Joseph Kevin 01 January 2013 (has links)
Excessive exposure to heat stress can cause a host of heat-related illnesses. For laborers, job specific work demands and protective garments greatly increase the risk of succumbing to the effects of heat stress. Microclimate cooling has been used to control heat stress exposure where administrative or engineering controls are not adequate. This study tested the performance of four personal cooling vests for use with insulated protective clothing (gas extraction coveralls) in warm-humid (35 ° C, 50% relative humidity) and hot-dry (40°C, 30% relative humidity) conditions. On 10 separate occasions, 5 male volunteers walked on a treadmill to elicit a target metabolic rate of 300 watts, for 120 minutes, while wearing a (a) water cooled vest, (b) air cooled vest, (c) frozen polymer vest (FP) (d) liquid CO2 cooling (LCO2) vest, or (e) no cooling (NC). A three-way mixed effects ANOVA was used to assess the results and a Tukey's Honestly Significant Difference multiple comparison test was used to identify where significant differences occurred ( < 0.05). The air, water, and FP systems produced significantly lower heat storage rates compared to NC. To the extent that the gas extraction coverall is worn in an environment between 30°C and 45°C and the rate of work is moderate, the FP, air and water vest were shown to manage heat storage well, reducing storage rate by about 48%, 56% and 65% respectively.
7

Viability and Accessibility of Urban Heat Island and Lake Microclimate Data over current TMY Weather Data for Accurate Energy Demand Predictions.

Weclawiak, Irena Anna 29 June 2022 (has links)
No description available.

Page generated in 0.0953 seconds