• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway

Bennallack, Philip Ross 01 November 2016 (has links)
Declining antibiotic discovery and flourishing antibiotic resistance have led to a modern antibiotic crisis which threatens to compromise our ability to treat infectious disease. Consequently, there is significant interest in developing new antibiotics with novel modes of action and chemical properties. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural compounds with the appealing attributes of being derived directly from a genetic template while possessing numerous exotic chemical features that contribute to stability and antimicrobial activity. Abundant in nature, their diverse range of biological activities makes them excellent prospects for antibiotic development. Thiopeptides, a RiPP family rich in chemical complexity, represent a particularly promising example. Characterized by post-translationally formed sulfur- and nitrogen-containing heterocycles, more than 100 different thiopeptides have been identified from various cultivable bacterial producers, and the mining of genomic and metagenomic data promises to uncover many more chemical species that have eluded discovery by conventional means. These peptides are potent inhibitors of bacterial protein synthesis and have been shown effective against many drug-resistant pathogens. Despite these attractive properties, therapeutic applications have been limited by the lack of an efficient synthetic route and poor aqueous solubility. Both of these challenges would be greatly alleviated by a more complete understanding of thiopeptide biosynthesis and improved systems for analysis and engineering. Here we describe the characterization of a new thiopeptide gene cluster, which encodes the archetypal thiopeptide micrococcin P1. We describe the identification of the bioactive product and detail the mechanism of immunity in the producing strain. We also describe efforts to engineer this pathway for heterologous expression in Bacillus subtilis. Using this platform, we have been able to dissect this intricate biosynthetic pathway and parse the order and timing of the processing events involved in peptide maturation. The knowledge gained from these studies will inform future efforts to adapt thiopeptides for therapeutic use, and guide efforts to engineer unnatural compounds using the exotic enzymology employed by thiopeptide producing bacteria.

Page generated in 0.0264 seconds