• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway

Bennallack, Philip Ross 01 November 2016 (has links)
Declining antibiotic discovery and flourishing antibiotic resistance have led to a modern antibiotic crisis which threatens to compromise our ability to treat infectious disease. Consequently, there is significant interest in developing new antibiotics with novel modes of action and chemical properties. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are natural compounds with the appealing attributes of being derived directly from a genetic template while possessing numerous exotic chemical features that contribute to stability and antimicrobial activity. Abundant in nature, their diverse range of biological activities makes them excellent prospects for antibiotic development. Thiopeptides, a RiPP family rich in chemical complexity, represent a particularly promising example. Characterized by post-translationally formed sulfur- and nitrogen-containing heterocycles, more than 100 different thiopeptides have been identified from various cultivable bacterial producers, and the mining of genomic and metagenomic data promises to uncover many more chemical species that have eluded discovery by conventional means. These peptides are potent inhibitors of bacterial protein synthesis and have been shown effective against many drug-resistant pathogens. Despite these attractive properties, therapeutic applications have been limited by the lack of an efficient synthetic route and poor aqueous solubility. Both of these challenges would be greatly alleviated by a more complete understanding of thiopeptide biosynthesis and improved systems for analysis and engineering. Here we describe the characterization of a new thiopeptide gene cluster, which encodes the archetypal thiopeptide micrococcin P1. We describe the identification of the bioactive product and detail the mechanism of immunity in the producing strain. We also describe efforts to engineer this pathway for heterologous expression in Bacillus subtilis. Using this platform, we have been able to dissect this intricate biosynthetic pathway and parse the order and timing of the processing events involved in peptide maturation. The knowledge gained from these studies will inform future efforts to adapt thiopeptides for therapeutic use, and guide efforts to engineer unnatural compounds using the exotic enzymology employed by thiopeptide producing bacteria.
2

Studies in pharmaceutical biotechnology : protein-protein interactions and beyond

Umeda, Aiko 02 July 2012 (has links)
Pharmaceutical biotechnology has been emerging as a defined, increasingly important area of science dedicated to the discovery and delivery of drugs and therapies for the treatment of various human diseases. In contrast to the advancement in pharmaceutical biotechnology, current drug discovery efforts are facing unprecedented challenges. Difficulties in identifying novel drug targets and developing effective and safe drugs are closely related to the complexity of the network of interacting human proteins. Protein-protein interactions mediate virtually all cellular processes. Therefore both identification and understanding of protein-protein interactions are essential to the process of deciphering disease mechanisms and developing treatments. Unfortunately, our current knowledge and understanding of the human interactome is largely incomplete. Most of the unknown protein-protein interactions are expected to be weak and/or transient, hence are not easily identified. These unknown or uncharacterized interactions could affect the efficacy and toxicity of drug candidates, contributing to the high rate of failure. In an attempt to facilitate the ongoing efforts in drug discovery, we describe herein a series of novel methods and their applications addressing the broad topic of protein-protein interactions. We have developed a highly efficient site-specific protein cross-linking technology mediated by the genetically incorporated non-canonical amino acid L-DOPA to facilitate the identification and characterization of weak protein-protein interactions. We also established a protocol to incorporate L-DOPA into proteins in mammalian cells to enable in vivo site-specific protein cross-kinking. We then applied the DOPA-mediated cross-linking methodology to design a protein probe which can potentially serve as a diagnostic tool or a modulator of protein-protein interactions in vivo. To deliver such engineered proteins or other bioanalytical reagents into single live cells, we established a laser-assisted cellular nano-surgery protocol which would enable detailed observations of cell-to-cell variability and communication. Finally we investigated a possible experimental scheme to genetically evolve a fluorescent peptide, which has tremendous potential as a tool in cellular imaging and dynamic observation of protein-protein interactions in vivo. We aim to contribute to the discovery and development of new drugs and eventually to the overall health of our society by adding the technology above to the array of currently available bioanalytical tools. / text
3

PNA-Polypeptide Assembly in a 3D DNA Nanocage for Building Artificial Catalytic Centers

January 2014 (has links)
abstract: Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial catalytic centers. PNA-polypeptide conjugates were synthesized directly using microwave assisted solid phase synthesis or alternatively PNA linkers were conjugated to biologically expressed proteins using chemical crosslinking. The PNA-polypeptides hybridized to the preassembled DNA nanocage at room tempera-ture or 11 ⁰C and could be assembled in a stepwise fashion. Time resolved fluorescence anisotropy and gel electrophoresis were used to determine that a negatively charged az-urin protein was repelled outside of the negatively charged DNA nanocage, while a posi-tively charged cytochrome c protein was retained inside. Spectroelectrochemistry and an in-gel luminol oxidation assay demonstrated the cytochrome c protein remained active within the DNA nanocage and its redox potential decreased modestly by 10 mV due to the presence of the DNA nanocage. These results demonstrate the benign PNA assembly conditions are ideal for preserving polypeptide structure and function, and will facilitate the polypeptide-based assembly of artificial catalytic centers inside a stable DNA nanocage. A prospective application of assembling multiple cyclic γ-PNA-peptides to mimic the oxygen-evolving complex (OEC) catalytic active site from photosystem II (PSII) is described. In this way, the robust catalytic capacity of PSII could be utilized, without suffering the light-induced damage that occurs by the photoreactions within PSII via triplet state formation, which limits the efficiency of natural photosynthesis. There-fore, this strategy has the potential to revolutionize the process of designing and building robust catalysts by leveraging nature's recipes, and also providing a flexible and con-trolled artificial environment that might even improve them further towards commercial viability. / Dissertation/Thesis / Ph.D. Bioengineering 2014
4

Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering

Bursey, Devan 01 March 2019 (has links)
Peptides are small proteins that are crucial in many biological pathways such as antimicrobial defense, hormone signaling, and virulence. They often exhibit tight specificity for their targets and therefore have great therapeutic potential. Many peptide-based therapeutics are currently available, and the demand for this type of drug is expected to continue to increase. In order to satisfy the growing demand for peptide-based therapeutics, new engineering approaches to generate novel peptides should be developed. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of peptides that have the potential to be effective scaffolds for in vivo peptide engineering projects. These natural RiPP peptides are enzymatically endowed with post-translational modifications (PTMs) that result in increased stability and greater target specificity. Many RiPPs, such as microcin J25 and micrococcin, can tolerate considerable amino acid sequence randomization while still being capable of receiving unique post-translational modifications. This thesis describes how we successfully engineered E. coli to produce the lasso peptide microcin J25 using a two-plasmid inducible expression system. In addition, we characterized the protein-protein interactions between PTM enzymes in the synthesis of micrococcin. The first step in micrococcin synthesis is the alteration of cysteines to thiazoles on the precursor peptide TclE. This step is accomplished by three proteins: TclI, TclJ, and TclN. We found that a 4-membered protein complex is formed consisting of TclI, TclJ, TclN, and TclE. Furthermore, the TclI protein functions as a central adaptor joining two other enzymes in the Tcl pathway with the substrate peptide.

Page generated in 0.0663 seconds