• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du procédé de réalisation de micro-antennes souples implantables pour l’Imagerie médicale par Résonance Magnétique / Study on the fabrication process of soft implantable microcoils for medical Magnetic Resonance Imaging

Couty, Magdalèna 07 December 2012 (has links)
L' Imagerie médicale par Résonance Magnétique (IRM) constitue un outil puissant pour le diagnostic et le suivi de pathologies dans le cadre des modèles développés sur petit animal en neurosciences. Cette application requiert une haute résolution spatiale et un Rapport Signal à Bruit(RSB) élevé, rendus possibles par l’utilisation d’un haut champ magnétique (7 T) et d’une antenne miniature à forte sensibilité, implantée à proximité de la zone d’intérêt. Le design monolithique de l’antenne, appelé Résonateur Multi-tours à Lignes de Transmission (RMLT), permet la miniaturisation en dessous du centimètre et sa réalisation par les technologies de microfabrication en salle blanche.Afin de réduire l’aspect invasif de l’implantation, l’antenne a été réalisée sur support souple :FEP Téflon® ou PDMS. Pour résoudre les problèmes d’adhérence liés à ces matériaux polymères, des traitements plasmas spécifiques ont été mis en œuvre pour le FEP Téflon® tandis qu’un procédé de transfert de motifs dédié au PDMS a été élaboré. Outre la fiabilité mécanique, l’épaisseur du revêtement PDMS assurant la bio compatibilité de l’antenne a été optimisée pour limiter le couplage diélectrique avec les tissus et ainsi conserver des caractéristiques électromagnétiques appropriées à l’IRM à 7 T lorsque l’antenne est implantée. L’ensemble de ces travaux a permis la réalisation des premières images du cerveau du rat acquises in vivo avec une micro-antenne souple implantée. Ces images ont démontré un RSB amélioré d’un facteur 5, comparées à celles acquises avec une antenne commerciale quadrature. D’autres applications et perspectives dans le domaine biomédical sont ouvertes par ces travaux comme des capteurs pour la détermination des propriétés diélectriques des tissus, et des microbobines et des capteurs de pression intégrés dans les canaux microfluidiques. / Magnetic Resonance Imaging (MRI) is a powerful tool for the diagnosis and the monitoring of diseases in the frame of research models developed on small animal in neurosciences. This application requires a high spatial resolution and a high Signal to Noise Ratio (SNR) using a high magnetic field (7 T) and a highly sensitive miniaturized coil, implanted near the interest area. The coilmonolithic design, called Multi-turn Transmission Lines Resonator (MTLR), allows theminiaturization below the centimeter scale and the clean-room technology. To reduce the invasive aspect of implantation, the coil was fabricated on a flexible substrate: FEP Teflon® or PDMS. To overcome adhesion issues related to these polymers, specific plasma treatments were applied to FEPTeflon® while a transfer process dedicated to PDMS was developed. Besides mechanical reliability, the thickness of the PDMS coating ensuring the coil biocompatibility, was optimized to limit the dielectric coupling with tissues and thus to keep suitable electromagnetic characteristics for 7 T MRI when the coil is implanted. This work allowed the achievement of the first images of the rat brain acquired in vivo using an implanted soft coil. These images have shown a 5-fold enhanced SNRcompared with the ones acquired using a commercial quadrature coil. Other applications in the biomedical field are open by this work: sensors for the dielectric characterization of tissues, integrated microcoils and pressure sensors in microfluidic channels.
2

Development of self-assembled, rolled-up microcoils for nuclear magnetic resonance spectroscopy

Lepucki, Piotr 08 November 2021 (has links)
Miniaturization is a key technological approach in current times. The most prominent examples of miniaturization are personal computers and mobile phones, but we observe miniaturization in other aspects of life, with the most recent example being small portable corona test kits. In science a big part of miniaturization focuses on detectors: to make them portable, to make them integrable into bigger, multi-function systems or to enable detection of smaller and smaller samples. For many experimental techniques highly sensitive and compact devices are already available, one of the extreme examples being single photon detectors. Compared to that, miniaturization of nuclear magnetic resonance (NMR) has still a long way to go in terms of both size and sensitivity. Recently, the successful miniaturization of an NMR coil was presented: on top of a flat polymeric bilayer a metallic layout is patterned. In an aqueous solution, one polymer layer absorbs water and swells, which induces strain between the two polymeric layers. This strain is released by a self-rolling-up of the bilayer, and the metal layer transforms into a microcoil. Such microcoils were successfully used for impedimetric measurements, as antennas, and as mentioned for NMR, but their performance in the latter was far from optimal. This thesis focuses on the optimization of rolled-up microcoils (RUMs) for NMR spectroscopy, with the goal to produce high-resolution and, most importantly, high-sensitivity microcoils. The performance of the microcoil can be expressed in three parameters, namely the spectral linewidth, the (normalized) limit of detection and the damping of a nutation curve, which was not a key parameter for this thesis. Both the microcoil design and the roll-up process have an influence on the quality of a RUM. For an optimal roll-up process, the polymeric bilayer layout needed some adjustment. The rolling process itself was improved through an addition of supporting structures on top of the bilayer, which resulted in tightly rolled tubes with a well-defined diameter. The coil layout was selected from several simple layouts. This layout was then optimized with the help of experiments and simulations. For example, an improvement in resolution was achieved through a reduction of the susceptibility of the metal. Finally, the coil was embedded into a microfluidic chip. This chip allows an easy sample supply into the coil interior and protects the coil from damage. As a side effect, the chip has a positive influence on the resolution of the detector. The best RUMs have a volume of only 1.5 nl, show a linewidth of only 8 ppb and a normalized limit of detection of 0.6 nmol√Hz at 600 MHz. The achieved resolution and sensitivity allow to resolve a 1H ethanol spectrum fully in a single measurement of 6 s duration. Compared to a standard shimmed NMR detector, where the linewidth is 0.65 ppb and the nLOD 10 nmol√Hz, the RUMs linewidth still needs some improvement, but the limit of detection is already an order of magnitude smaller. Combined with the fact that the limit of detection improves with linewidth, this shows the far superior sensitivity of RUMs compared to standard setups. A comparison with literature is also very promising, where optimized RUMs compete with the best published microcoils. Additionally, RUMs can be produced en masse, with, at the moment, four coils fitting on a single 50 x 50 mm2 glass substrate, while the best other microcoils were all made for single, specific experiments one at a time. And finally, the here presented recipe for self-assembled, RUMs is easily adaptable to even smaller sample volumes and to other coil layouts. It can be used to produce matching gradient coil systems and is a guideline on how to combine NMR and other techniques while maintaining a high NMR performance.:Introduction Nuclear magnetic resonance 1 NMR principle 1.1 A single nucleus in a magnetic field 1.2 Multiple spins in external field 1.3 Spins in natura 1.4 Typical liquid state spectrum 1.5 Typical NMR setup 2 Properties of an NMR detector 2.1 Quality of rf-field 2.2 Resolution 2.3 Signal-to-noise ratio 2.4 How to optimize a microcoil 3 Existing microdetectors 3.1 Solenoids 3.2 Saddle coils 3.3 Flat coils 3.4 Striplines/Microslots 4 Comparing microdetectors 4.1 The limit of detection 4.2 Performance of published microcoils Self-assembly 5 What is self-assembly? 6 Self-assembly in microfabrication 6.1 Macroscopic self-assembly 6.2 Self-rolled tubes 7 Self-assembly of rolled-up microcoils 7.1 Working principle 7.2 Experimental methods for self-assembly 8 Encapsulating rolled-up tubes 8.1 Microfluidics 8.2 Microfluidic chip 8.3 Experimental methods for encapsulation Rolled-up microcoils 9 Fabrication 9.1 Bilayer 9.2 Coil geometry 9.3 Metal stack 9.4 Supporting elements 9.5 Rolling process 9.6 Final layout 9.7 Microfluidic integration 10 Reducing susceptibility-induced field distortions 10.1 Simulating field distortions 10.2 Influence of the coil shape 10.3 Susceptibility matching 11 NMR performance 11.1 Measurement setup 11.2 Quality of rf-field 11.3 Resolution and sensitivity 11.4 Comparison to published microcoils 12 Outlook 12.1 Further improvements to rf-field, FWHM and nLOD 12.2 New coil shapes 12.3 New applications Summary Appendix A Simulation and maths A.1 Filling factor and rf-homogeneity A.2 Nutation and rf-homogeneity A.3 FT of one-sided exponential A.4 DFT A.5 Programs B Protocols B.1 Polymeric platform B.2 Metal layers C Test protocols C.1 Wet etching D Calculations for nLODs
3

The fabrication process of microfluidic devices integrating microcoils for trapping magnetic nano particles for biological applications / Procédé de fabrication de dispositifs microfluidiques intégrant des microbobines – Piégeage de nanoparticules magnétiques pour des applications en biologie

Cao, Hong Ha 21 July 2015 (has links)
Le but de cette étude est de concevoir, fabriquer et caractériser une puce microfluidique afin de mettre en oeuve la capture de nanoparticules magnétiques fonctionnalisées en vue de la reconnaissance d’anticorps spécifiques (couplage d’une très grande spécificité et sensibilité). Après avoir modélisé et simulé les performances de la microbobine intégrée dans le canal de la puce microfluidique en prenant soin de limiter la température du fluide à 37°C, la capture devant être effective, le microsystème est fabriqué en salle blanche en utilisant des procédés de fabrication collective. La fabrication du microdispositif en PDMS a aussi donné lieu à l’optimisation de procédés de modification de surface afin d’assurer la ré-utilisation du microdispositif (packaging réversible) et la limitation de l’adsorption non spécifique. L’immobilisation des anticorps su les billes (300 nm) a été menée à l’intérieur du canal en utilisant un protocole de type ELISA éprouvé. Le procédé a montré qu’il était également efficient pour cet environnement puisque nous avons pu mettre ne évidence la capture de nanoparticules / In this study, a concept of microfluidic chip with embedded planar coils is designed and fabricated for the aim of trapping effectively functionalized magnetic nanobeads and immobilizing antibody (IgG type). The planar coils as a heart of microfluidic chip is designed with criterion parameters which are optimized from simulation parameters of the maximum magnetic field, low power consumption and high power efficiency by FE method. The characterization of microcoils such as effectively nanobeads (300 nm) at low temperature (<37oC) is performed and confirmed. The channel network in PDMS material is designed for matching with entire process (including mixing and trapping beads) in microfluidic chip. A process of PDMS’s surface modification is also carried out in the assemble step of chip in order to limit the non-specific adsorption of many bio substances on PDMS surface. The microfluidic chip assemble is performed by using some developed techniques of reversible packaging PDMS microfluidic chip (such as stamping technique, using non-adhesive layer, oxygen plasma combining with solvent treatment). These packaging methods are important to reused microchip (specially the bottom substrate) in many times. The immobilization of antibody IgG-type is performed inside microfluidic chip following the standard protocol of bead-based ELISA in micro test tube. The result showed that IgG antibodies are well grafted on the surface of carboxyl-beads (comparing to result of standard protocol); these grafted antibodies are confirmed by coupling them with labeled second antibody (Fab-FITC conjugation).
4

Radio-Frequency Response Characterization and Design of Actuation Coils for a Novel MRI Guided Robotic Catheter System

Kamath, Sanjana K. 26 August 2022 (has links)
No description available.

Page generated in 0.0515 seconds