• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 97
  • 85
  • 76
  • 37
  • 10
  • 7
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1241
  • 285
  • 154
  • 144
  • 143
  • 123
  • 117
  • 102
  • 95
  • 76
  • 66
  • 66
  • 63
  • 63
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Fabrication and characterization of nanostructured surfaces for enhanced heat transfer /

Choi, Changho. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 69-73). Also available on the World Wide Web.
702

Diffusion based analysis of molecular binding reactions in microfluidic devices /

Hatch, Anson Verlin. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 184-192).
703

Development of a microfluidic based microvascular model towards a complete blood brain barrier (BBB) mimic /

Genes-Hernandez, Luiza I. January 2008 (has links)
Thesis (Ph. D.)--Michigan State University. Dept. of Chemistry, 2008. / Title from PDF t.p. (viewed on Aug. 20, 2009) Includes bibliographical references. Also issued in print.
704

Spatio-temporal self-organization in micro-patterned reactor arrays

Ginn, Brent Taylor. Steinbock, Oliver. January 2005 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Oliver Steinbock, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed Jan. 24, 2006). Document formatted into pages; contains xii, 123 pages. Includes bibliographical references.
705

Development of a porous silicon flow-through field effect sensing system for chemical and biological detection /

Clarkson, Jeffrey P. January 2005 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2005. / Typescript. Includes bibliographical references (leaves 109-113).
706

A nanophysiometer to study force-excitation coupling in single cardiac myocytes

Werdich, Andreas Agustinus. January 2006 (has links)
Thesis (Ph. D. in Physics)--Vanderbilt University, May 2006. / Title from title screen. Includes bibliographical references.
707

The complexity of Plasmodium falciparum infections in children in western Kenya /

Grills, Ardath White January 2006 (has links) (PDF)
Thesis (Ph.D.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
708

Microfluidic self-assembly of quantum dot compound micelles

Schabas, Greg 27 August 2007 (has links)
This thesis is devoted to the development of microfluidic processes for the controlled self-assembly of quantum dot compound micelles (QDCMs). Microfluidic processes are developed to combine the constituents (cadmium sulfide quantum dots, and block copolymer stabilizing chains) with water to facilitate self-assembly of the composite particles, QDCMs, through initial phase separation, subsequent growth, and eventual quenching. Two genres of microfluidic reactors are developed. The on-chip evolution of QDCM formation and growth is resolved through fluorescence microscopy; QDCM size distributions and associated statistics are determined through off-chip analysis by transmission electron microscopy (TEM). In a flow-focusing reactor, control over the mean size of QDCMs is demonstrated through both the water concentration and the growth time (or reactor channel length). Controlled QDCM self-assembly is also demonstrated in a multiphase gas-liquid reactor. In contrast to the flow-focusing reactor, increasing the multiphase reactor channel length results in a decrease in QDCM size and polydispersity.
709

Microfluidic-generated Double Emulsions for Cell Study, Drug Delivery and Particle Therapeutics Fabrication

ZHANG, YING January 2015 (has links)
<p>Droplet microfluidics is a powerful platform for both fundamental and applied biomedical research. The droplets are small in size with a diameter of 1-300 um. Thus, they could function as a miniaturized environment for quantitative and qualitative analysis. Each droplet composes of water shielded by an immiscible organic shell which enables independent control over different droplets. The large surface to volume ratio of spherical structure allows rapid mass and heat transfer, which could enable more homogeneous chemical reactions. Moreover, since multiple identical droplets could be generated simultaneously, parallel analysis for large amount of samples are possible. The use of microfluidics brings more power to droplet technology. The precise control over the flow allows droplet with preferable size and structure to be generated, which is critical for quantitative analysis, homogeneous chemical reaction as well as some in vivo applications. </p><p>Nonetheless, generation of stable, monodispersed and well controlled emulsions to meet specific biological functions are still challenging. First of all, to form more biocompatible W/O/W DE, the microfluidics devices must be patterned with desired surface wettability. W/O emulsion could only form in hydrophobic environment and the O/W emulsions could only form in hydrophilic environment. Differential patterning of the surface wettability to meet the needs are challenging. Second, DE are stabilized by two amphiphilic surfactants, one for the oil phase and the other for the water phase. Selection of appropriate surfactants should hook with specific biological application to ensure stability and biocompatibility. Third, the choice of fluid and contents in the fluid will affect the viscosity and capillary number of interfacial interaction, and eventually influences the droplet formation. The choice of biocompatible medium and buffer must take this into consideration. Fourth, the adoption of emulsions for the specific application requires optimization of the processing techniques in order to meet the needs for final analysis. For instance, control of droplet rupture for content release, modulation of oil phase permeability, quantitative analysis of content with flow cytometry, etc. </p><p>In this thesis, we will first demonstrate the design and fabrication of PDMS-based devices for automatic and high-throughput DE formation in Chapter 2. In the following chapters, we will demonstrate the successful adoption of the microfluidics generated DE for different biological applications. In chapter 3, we will illustrate the application of DE as a micro-incubator for cellular studies such genetic circuit behavior and performance in bacterial cells cultured in DE droplets and formation of 3D mammalian cell spheroid. In chapter 4, we will show the successful application of DE as drug carriers for intranasal drug delivery. In chapter 5, we showed the application of microfluidics generated DE as template for microparticle synthesis and the use of these microparticles as therapeutic agents in nucleic acid induced inflammations in autoimmune diseases.</p> / Dissertation
710

Acousto-fluidique à ondes évanescentes, application à l'organisation de cultures de cellules adhérentes / Acoustofluidics evanescent waves : application to adherent cells pattern in culture conditions

Aubert, Vivian 08 December 2017 (has links)
Les ondes acoustiques permettent la manipulation, le tri ou le mélange de particules ou de fluides à l'échelle micrométrique voire nanométrique sans contact et sans marquage. Nous tirons parti de la force de radiation acoustique pour manipuler des cellules vivantes. La plupart des techniques d'émission repose sur l'utilisation d'ondes de surface supersoniques. Cette approche, qui a largement fait ses preuves, requiert des substrats à matériau piézoélectriques. Elle reste, dans les cas pratiques, limitée par une forte atténuation. Ici, nous exploitons le régime subsonique de propagation afin de générer un champ acoustique évanescent dit de "Scholte" qui concentre son énergie au voisinage du substrat où sont précisément situés les objets. Ces ondes présentent donc la caractéristique de ne pas rayonner dans le fluide et ne sont par conséquent pas atténuées. Leur excitation ne requiert aucun matériau particulier et peut-être réalisée à distance de la zone d'intérêt. Nous avons démontré l'existence de ces ondes et illustré leur potentiel au travers d'exemples clés pour la microfluidique. En particulier, l'utilisation d'un champ tournant a montré la possibilité de piéger et d'entraîner la rotation à l'échelle individuelle. Nous décrivons aussi une méthode de caractérisation du plasma sanguin par "centrifugation" acoustique. Ensuite, un réseau de pièges acoustiques réversible a été adapté afin d'étudier son effet sur des cellules adhérentes (fibroblastes) en conditions de culture. Un traitement statistique nous a permis d'étudier les modifications d'organisation de la culture en fonction du phénotype. Ce travail démontre l'intérêt de l'acoustique dans l'étude de la motilité et des effets mécanotransducteurs sur une population cellulaire. / It has been shown that the use of acoustic waves enables nanoparticles, microbubbles, drops or microbeads, living cells and fluids to be moved, sorted, or mixed in a contactless and label-free manner. Here, we take advantage of the acoustic radiation force to manipulate living cells. Most of the applications and their associated techniques rely on the use of the so-called SAW (Rayleigh Surface Acoustic waves). This technique is powerful but requires piezoelectric substrates and suffers from a high damping due to radiation losses in the supersonic regime. Here, we work instead in the subsonic regime of propagation which allows us to generate an evanescent field ("Scholte" waves) thanks to a thin substrate. This wave presents very interesting characteristics since acoustic energy is concentrated in the vicinity of the substrate where objects are located. Moreover, the propagation is lossless and doesn't require any substrate or particular medium. We then showed the potential of this new approach through key-applications in microfluidics. This device enables to establish patterns and to concentrate cells in a flow. We have also designed a rotating acoustic field and shown the possibility of trapping and spinning of individual cells. We also describe a blood plasma characterization method by acoustic "centrifugation" within a drop. In a second part, we have designed a network of switchable acoustic traps compatible with living cells in order to study its effect on a population of adherent cells in culture. It reveals a change of cells behaviour depending on the phenotype. This work opens the way to the use of acoustics in the study of mechanotransductive effects on cells population.

Page generated in 0.0935 seconds