1 |
Photonic Dispersive Delay Line for Broadband Microwave Signal ProcessingZhang, Jiejun January 2017 (has links)
The development of communications technologies has led to an ever-increasing requirement for a wider bandwidth of microwave signal processing systems. To overcome the inherent electronic speed limitations, photonic techniques have been developed for the processing of ultra-broadband microwave signals. A dispersive delay line (DDL) is able to introduce different time delays to different spectral components, which are used to implement signal processing functions, such as time reversal, time delay, dispersion compensation, Fourier transformation and pulse compression. An electrical DDL is usually implemented based on a surface acoustic wave (SAW) device or a synthesized C-sections microwave transmission line, with a bandwidth limited to a few GHz. However, an optical DDL can have a much wider bandwidth up to several THz. Hence, an optical DDL can be used for the processing of an ultra-broadband microwave signal. In this thesis, we will focus on using a DDL based on a linearly chirped fiber Bragg grating (LCFBG) for the processing of broadband microwave signals. Several signal processing functions are investigated in this thesis. 1) A broadband and precise microwave time reversal system using an LCFBG-based DDL is investigated. By working in conjunction with a polarization beam splitter, a wideband microwave waveform modulated on an optical pulse can be temporally reversed after the optical pulse is reflected by the LCFBG for three times thanks to the opposite dispersion coefficient of the LCFBG when the optical pulse is reflected from the opposite ends. A theoretical bandwidth as large as 273 GHz can be achieved for the time reversal. 2) Based on the microwave time reversal using an LCFBG-based DDL, a microwave photonic matched filter is implemented for simultaneously generating and compressing an arbitrary microwave waveform. A temporal convolution system for the calculation of real time convolution of two wideband microwave signals is demonstrated for the first time. 3) The dispersion of an LCFBG is determined by its physical length. To have a large dispersion coefficient while maintaining a short physical length, we can use an optical recirculating loop incorporating an LCFBG. By allowing a microwave waveform to travel in the recirculating loop multiple times, the microwave waveform will be dispersed by the LCFBG multiple times, and the equivalent dispersion will be multiple times as large as that of a single LCFBG. Based on this concept, a time-stretch microwave sampling system with a record stretching factor of 32 is developed. Thanks to the ultra-large dispersion, the system can be used for single-shot sampling of a signal with a bandwidth up to a THz. The study in using the recirculating loop for the stretching of a microwave waveform with a large stretching factor is also performed. 4) Based on the dispersive loop with an extremely large dispersion, a photonic microwave arbitrary waveform generation system is demonstrated with an increased the time-bandwidth product (TBWP). The dispersive loop is also used to achieve tunable time delays by controlling the number of round trips for the implementation of a photonic true time delay beamforming system.
|
2 |
Silicon CMOS electronic and photonic integrated circuit platforms for photonic superconducting circuit interfaces and microwave signal processingOnural, Deniz 24 September 2024 (has links)
Silicon photonics, with optical I/O chipsets made in high-volume commercial CMOS foundries, are well-suited to solve interconnection challenges in scaling up next-generation high-performance processors (XPUs) for AI, machine learning, and high-performance computing. Silicon microring modulators and resonators with high quality factors are essential for electronic-photonic integrated circuits. However, the current silicon carrier-plasma-effect-based device platform has limitations in modulator sensitivity, tuning power, and optical loss. These limitations may affect its ability to support interconnect scaling to keep up with processor progress. This thesis presents research on new efficient silicon modulators and electronic-photonic integrated transmitters in a CMOS platform while addressing additional performance metrics such as device footprint, bandwidth, and modulation depth. The work demonstrates cryogenic optical data output from a superconducting Josephson junction (JJ) based circuit chip operating at 4K temperature, an interface requiring high energy efficiency per bit. The demonstration involves a pre-amplified silicon ring modulator operating at cryogenic temperature with record shift efficiency. The presented improvements in the energy efficiency of silicon photonic links could enable advancements in microwave photonic signal processing for 5G/6G wireless communication and microwave remote sensing, as well as new computing technologies such as superconducting processors.
A second part of the thesis explores integrating electro-optic materials with a Pockels effect into photonic integrated circuit platforms, aiming to increase the shift efficiency or reduce the loss of ring modulators relative to conventional rings that rely on the silicon carrier plasma effect. Initially, electro-optic (EO) polymers are incorporated into two 45 nm CMOS foundry platforms, with monolithic electronic-photonic integration, to explore the concept of integrating materials post-foundry through the substrate from the back side. Initial results demonstrate the feasibility of this concept, providing a new method to introduce exotic materials into CMOS while preserving the integrity of electronic layers. Then, we successfully integrated a newly discovered liquid crystal material, ferroelectric nematic liquid crystal (FNLC), into a silicon photonics platform. Unlike EO polymers, FNLCs can provide modulation without needing a high-temperature poling step. FNLCs enable high-speed Pockels modulation and low-speed, substantial refractive index changes through molecular reorientation, which makes them a potential substitute for the power-hungry and unreliable thermo-optic tuning currently used in silicon photonics. Finally, the thesis demonstrates ultra-high Q silicon resonators and filters in conventional silicon photonics platforms aimed at microwave photonics applications and shows the first demonstration of higher-order bandpass filters with 200-800 MHz wide passbands and low insertion loss. The device-level advancements demonstrated in this thesis collectively address system-level challenges of electronic-photonic integrated circuits and enable various applications involving microwave signal processing. / 2025-09-24T00:00:00Z
|
3 |
Microwave signal processing for foreign object identification : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Technology at Massey University, Institute of Information and Mathematical Sciences, Albany Campus, New ZealandSenaratne, G.G. January 2008 (has links)
No abstract available
|
4 |
All-optical Microwave Signal ProcessingHan, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated.
Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved.
The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
|
5 |
All-optical Microwave Signal ProcessingHan, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated.
Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved.
The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
|
6 |
All-optical Microwave Signal ProcessingHan, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated.
Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved.
The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
|
7 |
All-optical Microwave Signal ProcessingHan, Yichen January 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated.
Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved.
The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
|
8 |
Silicon Photonics and Its Applications in Microwave PhotonicsZhang, Weifeng January 2017 (has links)
Thanks to its compatibility with the current CMOS technology and its potential of seamless integration with electronics, silicon photonics has been attracting an ever-increasing interest in recent years from both the academia and industry. By applying silicon photonic technology in microwave photonics, on-chip integration of microwave photonic systems could be implemented with improved performance including a much smaller size, better stability and lower power consumption. This thesis focuses on developing silicon-based photonic integrated circuits for microwave photonic applications. Two types of silicon-based on-chip devices, waveguide Bragg gratings and optical micro-cavity resonators, are designed, developed, and characterized, and the use of the developed devices in microwave photonic applications is studied.
After an introduction to silicon photonics and microwave photonics in Chapter 1 and an overview of microwave photonic signal generation and processing in Chpater2, in Chapter 3 a silicon-based on-chip phase-shifted waveguide Bragg grating (PS-WBG) is designed, fabricated and characterized, and its use for the implementation of a photonic temporal differentiator is experimentally demonstrated. To have a waveguide grating that is wavelength tunable, in Chapter 4 a tunable waveguide grating is proposed by incorporating a PN junction across the waveguide grating, to use the free-carrier plasma dispersion effect in silicon to achieve wavelength tuning. The use of a pair of wavelength-tunable waveguide gratings to form a wavelength-tunable Fabry-Perot resonator for microwave photonic signal processing is studied. Thanks to its electrical tunability, a high-speed electro-optic modulator, a tunable fractional-order photonic temporal differentiator and a tunable optical delay line are experimentally demonstrated. To increase the bandwidth of a waveguide grating, in Chapter 5 a linearly chirped waveguide Bragg grating (LC-WBG) is designed, fabricated and evaluated. By incorporating two LC-WBGs in two arms of a Mach-Zehnder interferometer (MZI) structure, an on-chip optical spectral shaper is produced, which is used in a photonic microwave waveform generation system based on spectral-shaping and wavelength-to-time (SS-WTT) mapping for linearly chirped microwave waveform (LCMW) generation. To enable the LC-WBG to be electrically tuned, in Chapter 6 a lateral PN junction is introduced in the grating and thus an electrically tunable LC-WBG is realized. By incorporating two tunable LC-WBGs in a Michelson interferometer structure, an electrically tunable optical spectral shaper is made. By applying the fabricated spectral shaper in an SS-WTT mapping system, a continuously tunable LCMW is experimentally generated.
Compared with a waveguide Bragg grating device, an on-chip optical micro-cavity resonator usually has a much smaller dimension, which is of help to increase the integration density and reduce the power consumption. Different on-chip optical micro-cavity resonators are studied in this thesis. In Chapter 7, an on-chip symmetric MZI incorporating multiple cascaded microring resonators is proposed. By controlling the radii of the rings, the MZI could be designed to have a spectral response with a linearly-varying free spectral range (FSR), which could be used in photonic generation of an LCMW, and to have a multi-channel spectral response with identical channel spacing, which could be used in the implementation of an independently tunable multi-channel fractional-order temporal differentiator. To further reduce the footprint of an optical micro-cavity resonator, in Chapter 8 an ultra-compact microdisk resonator (MDR) with a single-mode operation and an ultra-high Q-factor is proposed, fabricated and evaluated, and its use for the implementation of a microwave photonic filter and an optical delay line is experimentally demonstrated. To enable the MDR to be electrically tunable, in Chapter 9 an electrically tunable MDR is realized by incorporating a lateral PN junction in the disk. The use of the fabricated MDR in microwave photonic applications such as a high-speed electro-optic modulator, a tunable photonic temporal differentiator and a tunable optical delay line is experimentally demonstrated.
|
Page generated in 0.0852 seconds