• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The indirect effect of Cry 1Ab protein expressed in Bt maize, on the biology of Chrysoperla pudica (Neuroptera: Chrysopidae) / Jo-Ann Francis Warren

Warren, Jo-Ann Francis January 2014 (has links)
Genetically modified (GM) maize was developed mainly to control lepidopteran pests such as the maize stem borer (Busseola fusca) (Lepidoptera: Noctuidae). Since the first commercialization of GM crops with insecticidal properties, possible non-target effects such as the effect at the third trophic level on important predators for example lacewing species (Chrysoperla spp.) have been of concern. Contradicting results were reported in previous studies with regard to the effect of Cry 1Ab protein produced by Bt maize on the performance of lacewings. Some studies found that Bt proteins had no effect while others reported that C. carnea performed poorly if they consumed prey that consumed Cry 1Ab protein. In South Africa one of the most common chrysopid species in maize ecosystems is Chrysoperla pudica (Navás) (Neuroptera: Chrysopidae). Evolution of Bt resistant pests, such as B. fusca in South Africa facilitates a new pathway for exposure of predators to healthy prey that consumes Cry 1Ab proteins. The aims of this study was to determine the effect of the Cry 1Ab protein expressed in Bt maize on a non-target organism‟s (C. pudica) biology via indirect exposure, and to determine the concentration of Cry 1Ab protein in the plant, prey and predator. Chrysoperla pudica larvae were indirectly exposed to the Bt-toxin through healthy Bt-maize feeding prey (B. fusca larvae) in two feeding experiments and lacewing survival and life history parameters recorded. Bt had a limited effect on some parameters that were evaluated. The larval and pupal periods of C. pudica larvae that were exposed to the Bt-toxin had a significant difference from that of the control treatment. The Bt-toxin had a significant effect on fecundity, fertility and malformation after emergence of C. pudica adults of which larvae fed only on Bt resistant B. fusca larvae, but not on the mortality rate. Cry 1Ab concentration was the highest in the plant, followed by the prey and lacewing larvae. This study showed that the Cry 1Ab protein had a slight adverse effect only on certain life parameters of C. pudica, and that Cry 1Ab protein was hardly detectable in C. pudica larvae. However, since this study represented a worst-case scenario where diverse prey was not available, insignificant effects is expected under field conditions where prey is diverse. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2014
12

Measuring the volatility spill-over effects between Chicago Board of Trade and the South African maize market /Gert J. van Wyk.

Van Wyk, Gert Johannes January 2012 (has links)
It is widely believed among South African agricultural market participants that the United States' corn price, as represented by the Chicago Board of Trade-listed corn contract, is causal to the price of white and yellow maize traded on the South African Futures Exchange. Although a strong correlation exists between these markets, the corn contract is far from causal to the South African maize price, as indicated by Auret and Schmitt (2008). Similarly, South African market participants believe that volatility generated in the United States corn market spills over to the South African market. Given the perceived volatility spill-over from the corn market to the maize market, market participants might inadvertently include a higher volatility component in an option price in the South African maize market than is necessary. This study sought to quantify the amount of volatility spill-over to the South African white and yellow maize market from the United States corn contract. This task was accomplished by applying an Exponential Generalised Auto Regressive Conditional Heteroscedasticity model, within an aggregate shock framework, to the data. The findings indicated that the volatility spill-over from the United States corn market to the South African maize market is not statistically significant. This result suggests that volatility in the South African market is locally driven; hence, it should not be necessary for a South African listed option contract to carry an international volatility component in its price. It was also found that the returns data of the South African maize market is asymmetrically skewed, indicating that bad news will have a greater effect on the price of maize compared with good news. / Thesis (MCom (Risk Management))--North-West University, Potchefstroom Campus, 2013.
13

Bt maize and frogs : an investigation into possible adverse effects of Bt toxin exposure to amphibian larvae / J.L. Zaayman.

Zaayman, Jazel Larissa January 2012 (has links)
Genetically modified maize expressing the Bt-protein Cry1Ab (Bt maize) is planted widely in South Africa. Crop residues of Bt maize often end up in aquatic ecosystems where aquatic organisms are exposed to Cry1Ab protein. The effect of this protein on non-target aquatic organisms has not yet been studied in South Africa. The aim of this study was to evaluate the possible effect of exposure to Bt maize on morphological development of Xenopus laevis and Amietophrynus gutturalis tadpoles. Three experiments were conducted with each of X. laevis and A. gutturalis. Five of these were conducted in the bio-secure Amphibian Biology laboratory and one with A. gutturalis in a shade-house facility where microcosms were exposed to natural conditions. In the first experiment of X. laevis and A. gutturalis, which was replicated three times, large portions of maize leaves were placed in the bottoms of microcosms. X. laevis received supplementary pulverised leaves in suspension while A. gutturalis tadpoles fed on provided leaves. For both control and experimental groups microcosms were divided in three groups receiving respectively 15, 30 and 45 g of maize leaves. In the second and third experiment tadpoles only received pulverised Bt maize leaves in suspension. Each replicate (microcosm) contained 50 one-day old tadpoles. Experiment two was conducted to determine whether the Bt-protein has adverse effects on A. gutturalis tadpoles when tadpoles are exposed to the protein in the water but not feeding on the plant material. A total of 100 tadpoles were used during the experiment and tadpoles were placed individually in 250 ml plastic cups that were filled with 100 ml water witch contained an extract of either Bt and non-Bt maize leaves. Tadpoles were fed twice a week with TetraTabimin bottom-feeding fish pellets in suspension. Experiment three was conducted to determine whether the Bt-protein will have adverse effects on A. gutturalis tadpoles when tadpoles feed on Bt maize leaves. Tadpoles were divided into a treatment in which 50 tadpoles were fed Bt maize leaves and a control treatment in which 50 tadpoles were fed non-Bt maize leaves. Tadpoles were placed individually in 250 ml plastic cups that were each filled with 100 ml borehole water. On a weekly basis 10 randomly selected tadpoles were collected, measured and staged for morphological development, using the Nieuwkoop and Faber Normal Table for X. laevis and Gosner stages for A. gutturalis tadpoles. The significant effects observed in some life history parameters of tadpoles exposed to Cry1Ab protein cannot be ascribed to the effect of the protein. Poor husbandry turned out to be the single most important confounding factor. Before follow-up studies are conducted husbandry practices should be optimized. / Thesis (MSc (Environmental Sciences))--North-West University, Potchefstroom Campus, 2013.

Page generated in 0.0402 seconds