• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electromagnetic radiation as a tool to determine actual crustal stresses - applications and limitations / Elektromagnetische Strahlung als Werkzeug zur Bestimmung rezenter Krustenspannungen - Anwendungen und Grenzen

Krumbholz, Michael 22 January 2010 (has links)
No description available.
2

Einfluss des Feuchtigkeitsgehalts des Wurzelkanaldentins auf die Entstehung und den Nachweis von Mikrorissen - Eine Mikro-Computertomografie-Studie / Moisture content of root canal dentin affects detection of microcracks using micro-computed tomography

Müller, Christine 22 June 2020 (has links)
No description available.
3

Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore / Fabric controlled weathering of natural and consolidated marbles

Rüdrich, Jörg Michael 03 June 2003 (has links)
No description available.
4

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith 01 December 2011 (has links) (PDF)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
5

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith January 2011 (has links)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
6

Verbundene Mikroporosität in Kristallingesteinen / Fallstudie Felslabor Grimsel

Schild, Maren 04 November 1999 (has links)
No description available.
7

Cooling of electrically insulated high voltage electrodes down to 30 mK / Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

Eisel, Thomas 07 November 2011 (has links) (PDF)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers. Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures. In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length. Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.
8

Cooling of electrically insulated high voltage electrodes down to 30 mK

Eisel, Thomas 04 October 2011 (has links)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers. Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures. In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length. Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.

Page generated in 0.0427 seconds