• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Direct method for integrating a structural health monitoring system for fibre reinforced plastic composite pressure vessels

Naumann, M. D., Kroll, L. 25 November 2019 (has links)
Das vorgeschlagene SHM-System 'Adapted Metal Wire Based and fiber Oriented Sensor - AMBOS', basierend auf Drähten aus Metalllegierungen, ist vergleichsweise kostengünstig und verfügt über sehr gute Verarbeitungseigenschaften, insbesondere mit Eignung zur Integration in den Wickelprozess. Eine speziell entwickelte Abwickelvorrichtung erlaubt die direkte Verarbeitung der Drähte zusammen mit den Verstärkungsfasern und wärmehärtenden Harzsystemen im Wickelprozess. Insbesondere aufgrund der hohen Genauigkeit und der sehr niedrigen Material- und Verarbeitungskosten hat das beschriebene Verfahren ein großes Potenzial für den Einsatz in der automobilen Serienfertigung. Grundsätzlich sind die untersuchten Metalldrähte für eine solche Anwendung geeignet. Ein wesentlicher Vorteil ist die einfache Kompensation von thermischen Einflüssen. Weitere Untersuchungen zum Korrosionsschutz und zu Umwelteinflüssen stehen noch aus. / The proposed SHM system called “Adapted Metal wire Based and fiber Oriented Sensor – AMBOS”, based on wires from metal alloys, is comparatively inexpensive and has very good processing properties, in particular with suitability for integration into the winding process. A specially developed unwinding de-vice allows direct processing of the wires together with the reinforcing fibres and thermosetting resin systems in the winding process. Especially due to the high ac-curacy and the very low material and processing costs, the described process has great potential for use in automotive series production. In principle, the metal wires investigated are suitable for such an application. A significant advantage is the simple compensation of thermal influences. Further investigations on corrosion preservation and influences from the environment are still pending.
2

Entwicklung eines Überwachungswerkzeuges für Brückenkranstrukturen

Goedeke, Arne 04 July 2022 (has links)
Die Arbeit stellt ein umfangreiches Hilfsmittel beim Umgang mit alten Brückenkranstrukturen dar, um einen sicheren Kranbetrieb an der Grenze und beim Überschreiten der rechnerischen Lebensdauer zu gewährleisten. Sie konzentriert sich dabei auf Ermüdungsschäden in der primären Tragstruktur von Brückenkranen, da diese das größte Gefahrenpotential darstellen. Die Zielsetzung der Arbeit lässt sich im Kern mit der „Maximierung der Krannutzungsdauer bei minimalen Stillstandzeiten und sicherem Kranbetrieb“ beschreiben. Aufgrund der Komplexität von Ermüdungsrissen in Bezug auf deren Entstehung und auf den Umgang nach deren Auftreten wurde die Zielsetzung mit unterschiedlichen Lösungsansätzen verfolgt. Es wurden die drei Kernansätze – Lebensdauervorhersage, Strukturüberwachung und Struktursanierung bzw. -ertüchtigung verfolgt. Zur Reduzierung von Stillstandzeiten dient eine Lebensdauervorhersage, mithilfe welcher die verbleibende Zeit bis zum Eintreten einer Strukturschädigung abgeschätzt werden kann, was eine bedarfsorientierte und frühzeitige Strukturertüchtigung erlaubt und somit die prädiktive bzw. präventiv zustandsabhängige Instandsetzung ermöglicht. Eine Lebensdauervorhersage basiert auf Berechnungen der Ermüdungsfestigkeit, welche ertragbare Beanspruchbarkeiten und ertragene Beanspruchungen gegenüberstellen. Um die Qualität einer Lebensdauervorhersage erheblich zu verbessern, wurde ein Messverfahren entwickelt, welches die Erfassung der Kranbelastungsgrößen mit einem vergleichsweise geringen messtechnischen Aufwand erlaubt und an jedem Brückenkran nachgerüstet werden kann. Ein sicherer Kranbetrieb soll mit einer fortwährenden Strukturüberwachung kritischer Bereiche sichergestellt werden. Ermüdungsrisse in Kranstrukturen werden zumeist im Rahmen von turnusmäßig durchgeführten Sichtprüfungen oder häufig sogar zufällig festgestellt. Dies hat zur Folge, dass das Risswachstum größtenteils weit fortschreiten kann und die Struktur stark geschädigt wird oder es zum Bruch und somit zu schweren Havarien kommt. Zur Vermeidung derartiger Szenarien wurde ein Verfahren zur Erfassung von Ermüdungsrissen auf Basis der Veränderung der Materialdehnung während des Risswachstums entwickelt. Wie auch das Verfahren zur Erfassung der Belastungsgrößen zeichnet es sich durch einen geringen messtechnischen Aufwand und eine universelle Anwendbarkeit aus. Neben der qualitativen Erfassung von Ermüdungsrissen ermöglicht das Verfahren ebenfalls quantitative Aussagen in Form von Risslängen und -positionen. Durch den Abgleich mit bruchmechanischen Grenzwerten, welche im Rahmen von strukturmechanischen Simulationen ermittelt werden können, kann das Gefahrenpotenzial eines Ermüdungsrisses während des fortschreitenden Risswachstums bewertet werden. Eine Maximierung der Kranlebensdauer kann durch eine lokale Veränderung der Tragstruktur erreicht werden. Bei der Konstruktion vieler älterer Krane konnten keine strukturmechanischen Simulationen zur Bewertung kritischer Strukturdetails genutzt werden. Hierdurch kam es mitunter zur falschen Einschätzung von Kerben. Durch die nachträgliche Begutachtung bestehender Kranstrukturen mithilfe der Finiten-Elemente-Methode (FEM), können derart kritische Strukturbereiche identifiziert und darüber hinaus modifiziert werden. In der Arbeit werden verschiedene Kernansätze bei der beanspruchungsbezogenen Optimierung von Kranstrukturen extrahiert und dargestellt. Diese können entweder als Reaktion auf einen Schaden (Sanierung) oder als Prävention vor einem Schaden (Ertüchtigung) umgesetzt werden. Da die modifizierten Strukturbereiche i. d. R. erheblich von den in den Normen katalogisierten Strukturstellen abweichen, sollte im Vorfeld der Umsetzung einer Strukturmodifizierung eine versuchstechnische Validierung erfolgen. Hierfür wurde eine Prüfvorrichtung entwickelt, welche speziell für große Strukturbauteile geeignet ist und die Ermittlung beanspruchbarkeitsspezifischer Parameter für nicht katalogisierte Strukturbereiche von Brückenkranen ermöglicht. Im Rahmen der Zusammenfassung wurde ein Leitfaden zur Anwendung der Arbeit in Form von mehreren Fließbildern bereitgestellt. Hierdurch soll die Nutzung der entwickelten Verfahren und Methoden einem breiten Spektrum potenzieller Anwender zugänglich gemacht werden.:1 Einführung 1.1 Ausgangssituation 1.2 Zielsetzung und Lösungsweg 2 Beanspruchung von Bauteilstrukturen 2.1 Beanspruchungskomponenten ebener Strukturen 2.2 Beanspruchungskomponenten räumlicher Strukturen 2.3 Verzerrungen ebener Strukturpunkte 2.4 Das Hauptachsensystem 2.4.1 Transformation bei reiner Schubbeanspruchung 2.4.2 Transformation bei allgemeiner Beanspruchung 2.5 Hauptnormaldehnungen 2.6 Querkontraktion 2.7 Transformierte Spannungen und Hauptnormalspannungen 2.8 Mohrscher Spannungs- und Verzerrungskreis 2.9 Bezugssystemunabhängige Vergleichshypothesen 3 Messen von Beanspruchungszuständen mithilfe von Dehnungsmessstreifen (DMS) 3.1 Wirkprinzip von Dehnungsmessstreifen (DMS) 3.2 Wheatstone’sche Brückenschaltung 3.2.1 Herleitung 3.2.2 Mechanische Anwendung 3.3 Fehlereinfluss am ebenen Beanspruchungszustand 3.3.1 Fehler infolge von Scherung 3.3.2 Fehlereinfluss der Appliziergenauigkeit 3.3.3 DMS-Rosetten zur Vermeidung von Applizierungsfehlern 4 Statische Beanspruchbarkeit von Bauteilstrukturen 5 Ermüdungsfestigkeitsberechnung und Lebensdauervorhersage 5.1 Aufnahme von Wöhlerlinien 5.2 Vorgehen bei der Lebensdauervorhersage 5.3 Rechengang am Beispiel der FKM-Richtlinie 5.3.1 Begründung der Auswahl der FKM-Richtlinie 5.3.2 Werkstoffwechselfestigkeit 5.3.3 Bauteilwechselfestigkeit (konstruktiver Einfluss) 5.3.4 Auszählen des Beanspruchungsverlaufes 5.3.5 Bauteildauerfestigkeit (Mittelspannungseinfluss) 5.3.6 Bauteilbetriebsfestigkeit (Einfluss des Beanspruchungsverlaufes) 5.3.7 Nachweis und Berechnung der Lebensdauer 6 Ermittlung des Beanspruchungsverlaufes an Brückenkrantragwerken 6.1 Hauptbelastungsgrößen des Krantragwerks 6.2 Rekonstruktion des Beanspruchungs-Zeit-Verlaufes 7 Verfahren zur Erfassung der Kranbelastungsgrößen 7.1 Bedarfsbegründung des Verfahrens 7.2 Theoretische Herleitung des Verfahrens 7.3 Verwendung zusätzlicher DMS 7.4 Aufnahme von Dehnungs-Kennlinien 7.5 Vorbereitung der Installation 7.6 Beispiel anhand realer Messdaten 7.7 Zusammenfassung und Ausblick der Weiterentwicklung 8 Verfahren zur Strukturüberwachung an Brückenkrantragwerken 8.1 Einführung 8.2 Theoretische Herleitung 8.3 Validierung des Verfahrens 8.3.1 Versuchsvorrichtung 8.3.2 Gekerbte Strukturbauteile 8.3.3 Geschweißte Strukturbauteile 8.3.4 Ergebnis 8.4 Anwendung am Brückenkran 8.4.1 Herleitung 8.4.2 Versuchstechnische Validierung 8.5 Fehlereinflüsse 8.5.1 Positionierung der DMS 8.5.2 Plastisches Werkstoffverhalten 8.6 Zusammenfassung und Ausblick der Weiterentwicklung 9 Ertüchtigung und Sanierung von Brückenkrantragwerken 9.1 Systematik der Struktursanierung 9.2 Beispiele der Strukturertüchtigung 9.3 Validierung erarbeiteter Sanierungsstrategien 9.3.1 Entwicklung eines Resonanzpulsators 9.3.2 Versuchsdurchführung 9.4 Zusammenfassung und Ausblick der Weiterentwicklung 10 Zusammenfassung und Anwendung dieser Arbeit 11 Ausblick
3

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith 01 December 2011 (has links) (PDF)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
4

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith January 2011 (has links)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
5

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 13 October 2016 (has links) (PDF)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.
6

Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites

Hetti, Mimi 16 September 2016 (has links)
The poly(glycidyl methacrylate)-modified magnetite nanoparticles, Fe3O4-PGMA NPs, were investigated and applied in nondestructive flaw detection of polymeric materials in this research. The Fe3O4 endowed magnetic property to the materials for flaw detection while the PGMA promoted colloidal stability and prevented particle aggregation. The magnetite nanoparticles (Fe3O4 NPs) were successfully synthesized by coprecipitation and then surface-modified with PGMA to form PGMA-modified Fe3O4 NPs by both grafting-from and grafting-to approaches. For the grafting-from approach, the Fe3O4 NPs were surface-functionalized with α-bromo isobutyryl bromide (BIBB) to form BIB-modified Fe3O4 NPs (Fe3O4-BIB NPs) with covalent linkage. The resultant Fe3O4-BIB NPs were used as surface-initiators to grow PGMA by surface-initiated atom transfer radical polymerization (SI-ATRP). For the grafting-to approach, the Fe3O4 NP were surface-functionalized with (3-mercaptopropyl)triethoxysilane (MCTES) to form MCTES-modified Fe3O4 NPs (Fe3O4-MCTES NPs). The PGMA with Br-end group was pre-synthesized by ATRP and then was grafted to the surface of the Fe3O4-MCTES NPs by coupling reaction. Both bare and modified Fe3O4 NPs exhibited superparamagnetism and the existence of iron oxide in the form of Fe3O4 was confirmed. The particle size of individual Fe3O4 NPs was about 8 – 24 nm but they aggregated to form clusters. The PGMA-modified NPs formed stable dispersion in chloroform and had larger cluster sizes than the unmodified ones because of the PGMA polymer layer. However, the uniformity of the NP clusters could be improved with PGMA surface grafting. The PGMA surface layer of the grafting-from (Fe3O4-gf-PGMA) NPs was thin and dense while that of the grafting-to (Fe3O4-gt-PGMA) NPs was thick and loose. The hydrodynamic diameters (Zave) of Fe3O4-gf-PGMA NP clusters could be controlled between 176 to 643 nm, dependent on the PGMA contents and reaction conditions. During SI-ATRP, side reactions happened and caused NP aggregation as well as increase of size of NP clusters. However, the aggregation has been minimized through optimization of reaction conditions. Oppositely, Zave values of Fe3O4-gt-PGMA NPs had little variation of about 120 – 190 nm. And the PGMA content of the Fe3O4-gt-PGMA NPs was limited to 12.5% because of the spatial hindrance during grafting process. The saturation magnetization (Ms) of the unmodified Fe3O4 NPs was about 77 emu/g, while those of the grafting-from and grafting-to Fe3O4-PGMA NPs were 50 – 66 emu/g and 63 – 70 emu/g, respectively. For Fe3O4-PGMA NPs with similar Fe3O4 contents, the grafting-to NPs had slightly higher Ms than the grafting-from counterparts. In addition, the Ms of both kinds of the Fe3O4-PGMA NPs with higher Fe3O4 content (> 87%) were also higher than that of the fluidMAG-Amine, the commercially available amine-modified MNPs. Besides, both kinds of Fe3O4-PGMA NPs also had much higher Fe3O4 contents and Ms values than most of the reported PGMA-modified MNPs. The magnetic epoxy nanocomposites (MENCs) were prepared by blending the modified Fe3O4 NPs into bisphenol A diglycidyl ether (BADGE)-based epoxy system and the distributions of both kinds of the PGMA-modified NPs were much better than that of the oleic acid-modified Fe3O4 NPs. Similar to the NPs, the MENCs also exhibited superparamagnetism. By cross-section TEM observation, the grafting-to Fe3O4-PGMA NPs formed more homogeneous distributions with smaller cluster size than the grafting-from counterparts and gave higher Ms of the MENCs. Nondestructive flaw detection of surface and sub-surface defects could be successfully achieved by brightness contrast of images given through eddy current testing (ET) method, which is firstly reported. The mechanical properties of the materials were influenced very slightly when 2.5% or lower Fe3O4-gt-PGMA NPs were present while the presence of the Fe3O4-gf-PGMA NPs (1 – 2.5 %) gave mild improvement of the storage modulus and increase of the glass-rubber transition temperature(Tg) of the MENCs. Furthermore, the Fe3O4-PGMA NPs could be evenly coated onto the functionalized ultra-high molecular weight poly(ethylene) (UHMWPE) textiles. The Fe3O4-gt-PGMA NPs were coated on the textile in order to prepare NP-coated textile-reinforced composite. Preliminary result of ET measurement showed that the Fe3O4-gt-PGMA NPs coated on the textiles could visualize the structure of the textile hidden inside and their relative depth. Accordingly, the incorporation of MNPs to polymers opens a new pathway of damage-free structural health monitoring of polymeric materials.:1. Introduction 2. Theoretical section 2.1. Magnetite Nanoparticles (MNPs) 2.2. Applications of MNPs 2.3. Atom transfer radical polymerization (ATRP) 2.4. Magnetic nanocomposites (MNCs) 2.5. Damage-free structural health monitoring (SHM) using MNPs 3. Objective of the work 4. Materials, methods and characterization 4.1. Materials 4.2. Methods 4.3. Formation of polymeric magnetic nanocomposites 4.4. Characterization 5. Results and discussions 5.1. Unmodified magnetite nanoparticles (Fe3O4 NPs) 5.2. Oleic acid-modified (Fe3O4–OA) NPs 5.3. PGMA-modified NPs by grafting-from approach (Fe3O4-gf-PGMA NPs) 5.4. PGMA-modified NP by grafting-to approach (Fe3O4-gt-PGMA NPs) 5.5. Comparison between grafting-from and grafting-to Fe3O4-PGMA NPs 5.6. Magnetic epoxy nanocomposites (MENCs) 5.7. Fiber-reinforced epoxy nanocomposites 6. Conclusions and outlook 7. Appendix 8. List of figures, schemes and tables 9. References Versicherung Erklaerung List of publications
7

Synthesis and Characterization of Strain Sensitive Multi-walled Carbon Nanotubes/Epoxy based Nanocomposites

Sanli, Abdulkadir 03 April 2018 (has links)
Among various nanofillers, carbon nanotubes (CNTs) have attracted a significant attention due to their excellent physical properties. Incorporation of a very low amount of CNTs in polymer matrices enhances mechanical, thermal and optical properties of conductive polymer nanocomposites (CPNs) tremendously. For mechanical sensors, the piezoresistive property of CNTs/polymer nanocomposites exhibits a great potential for the realization of stable, sensitive, tunable and cost-effective strain sensors. Achieving homogeneous CNTs dispersion within the polymer matrices, understanding their complex piezoresistivity and conduction mechanisms, as well as the response of the nanocomposites under humidity and temperature effects, is highly required for the realization of piezoresistive CNTs/polymer based nanocomposites. This research primarily aims to synthesize and characterize CNTs/polymer based strain sensitive nanocomposites, which are cost-effective, applicable on both rigid and flexible substrates and require a non-complex fabrication process. A comprehensive understanding of the complex conduction and piezoresistive mechanisms of CNTs/polymer nanocomposites and their responses under humidity and temperature effects is another purpose of this thesis. For this purpose, synthesis and complex electromechanical characterization of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites are realized. In order to realize strain sensors for the strain range up to 1 % the use of epoxy is focused due to its good adhesion, dimensional stability, and good mechanical properties. The nanocomposites with up to 1 wt.% MWCNTs are synthesized by a non-complex direct mixing method and the final nanocomposites are deposited on flexible Kapton and rigid FR4 substrates and their corresponding morphological, electrical, electromechanical, as well as the response of the nanocomposite under humidity and temperature influences, are examined. The deformation over the sensor area is tested by digital image correlation (DIC) under quasi-static uniaxial tension. Quantitative piezoresistive characterization is performed by electrochemical impedance spectroscopy (EIS) over a wide range of frequencies. Further, dispersion quality of MWCNTs in the epoxy polymer matrix is monitored by scanning electron microscopy (SEM). Additionally, in order to tailor the piezoresistivity of the strain sensor, an R-C equivalent circuit is derived based on the impedance responses and the corresponding parameters are extracted from the applied strain. Obtained SEM images confirm that MWCNTs/epoxy nanocomposites with different MWCNTs concentrations have a good homogeneity and dispersion. Atomic force microscopy (AFM) analysis show that the samples have relatively good surface topography and fairly homogeneous CNTs networks. Higher sensitivity is achieved in particular at the concentrations close to the percolation threshold. A non-linear piezoresistive behavior is observed at low MWCNTs concentrations due to the dominance of tunneling effect. The strain sensitive nanocomposites deposited on FR4 substrates present high-performance strain sensing properties, including high sensitivity, good stability, and durability after cyclic loading and unloading. In addition, MWCNTs/epoxy nanocomposites show quite a small creep, low hysteresis under cyclic tensile and compressive loadings and fast response and recovery times. Nanocomposites provide an opportunity to measure 2-D strain in one position including amplitude and direction for complex configuration of structures in real-time systems or products. In contrast to present solutions for multi-directional strain sensing, MWCNTs/epoxy based nanocomposites give promising results in terms of durability, easy-processability, and tunable piezoresistivity. Unlike commercially-available approaches for crack/damage identification, MWCNTs/epoxy nanocomposites are capable of detecting the applied crack directly over a certain area. From the humidity influence, it has been found that resistance of nanocomposites increases with the increase of humidity exposure due to swelling of the polymer. Temperature investigations show that MWCNTs/epoxy nanocomposites give negative temperature coefficient (NTC) response due to thermal activation of charge carriers and the temperature sensitivity increases with the increase of filler concentration. The proposed approach can be further developed by combining differently fabricated sensors for realizing a compact structural health monitoring system or multi-functional sensor, where pressure, strain, temperature, and humidity can be monitored simultaneously. / Unter den verschiedenen Nanofillern haben CNTs aufgrund ihrer hervorragenden physikalischen Eigenschaften eine bedeutende Aufmerksamkeit erregt. Die Einarbeitung einer sehr geringen Menge an CNTs in Polymermatrizen verbessert die mechanischen, thermischen und optischen Eigenschaften von CPNs enorm. Für mechanische Sensoren bietet die piezoresistive Eigenschaft von CNTs/Polymer-Nanokompositen ein großes Potenzial zur Realisierung stabiler, empfindlicher, abstimmbarer und kostengünstiger Dehnungssensoren. Die Erzielung einer homogenen CNT-Dispersion innerhalb der Polymermatrizen, das Verständnis ihrer komplexen Piezoresistivitäts- und Leitungsmechanismen sowie die Reaktion der Nanokomposite unter Feuchte- und Temperatureinflüssen ist für die Realisierung piezoresistiver CNTs/Polymer-basierter Nanokomposite unerlässlich. Diese Arbeit zielt darauf ab, CNTs/polymerbasierte dehnungsempfindliche Nanokomposite herzustellen und zu charakterisieren. Diese Nanokompositen sollen kostengünstig, sowohl auf starren als auch auf flexiblen Substraten anwendbar sein und ein nicht komplexes Herstellungsverfahren erfordern. Ein umfassendes Verständnis der komplexen leitungs- und piezoresistive Mechanismen von CNTs/ Polymer-Nanokompositen und deren Reaktionen unter Feuchtigkeits- und Temperatureinflüssen ist ein weiteres Ziel dieser Arbeit. Zu diesem Zweck werden Synthese und komplexe elektromechanische Charakterisierung von MWCNTs/epoxy nanocomposites realisiert. Um Dehnungssensoren für den Dehnungsbereich bis zu 1 % realisieren zu können, wird der Einsatz von Epoxy aufgrund seiner guten Haftung, Dimensionsstabilität und guten mechanischen Eigenschaften fokussiert. Zufällig verteilte MWCNTs mit bis zu 1 wt.% MWCNTs-Konzentration ist durch ein direktes Mischen synthetisiert und die Nanokomposite werden auf flexiblen Kapton und starren FR4 Substraten durch Siebdruck appliziert und anschließend deren morphologische, elektrische, elektromechanische sowie die Reaktion des Nanocomposits unter Feuchtigkeits- und Temperatureinflüssen untersucht. Die Verformung über den Sensorbereich wird duch die Digital Image Correlation (DIC) Methode unter quasi-statischer uniaxialer Spannung getestet. Die quantitative piezoresistive Charakterisierung wird mit elektrische Impedanzspektroskopie (EIS) in einem breitem Frquenzspektrum durchgeführt. Ferner wird die Dispersionsqualität von MWCNTs in der Epoxidepolymermatrix durch Scanning Electron Microscopy (SEM) überprüft. Zusätzlich ist, um die Piezoresistivität des Dehnungssensors abzustimmen, eine RC-Äquivalenzschaltung auf der Grundlage der Impedanzantworten abgeleitet und die entsprechenden Parameter unter Belastung extrahiert. Erhaltene SEM-Bilder bestätigen, dass MWCNTs/Epoxide-Nanokomposite mit unterschiedlichen MWCNTs-Konzentrationen eine gute Homogenität und Dispersion aufweisen. Die atomic force microscopy (AFM) Untersuchung zeigt, dass die Proben relativ gute Oberflächentopographie und ziemlich homogene CNT-Netzwerke aufweisen. Eine höhere Empfindlichkeit wird insbesondere bei den Konzentrationen nahe der Perkolationsschwelle erreicht. Eine nichtlineare Piezoresistivität wird bei niedrigen MWCNTs Konzentrationen aufgrund der Dominanz des Tunnelwirkungseffekts beobachtet. Die auf FR4-Substraten applizierten dehnungsempfindlichen Nanokomposite weisen ausgezeichnete Dehnungsmessungseigenschaften einschließlich hohe Empfindlichkeit, gute Stabilität und Haltbarkeit nach zyklischer Be- und Entlastung auf. Darüber hinaus zeigen MWCNTs/Epoxide-Nanokomposite ein geringes Kriechen, eine kleine Hysterese unter zyklischen Zug- und Druckbelastungen, sowie schnelle Reaktionsund Wiederherstellungszeiten. Nanokomposite bieten die Möglichkeit, 2-D-Dehnungen in einer Position einschließlich Amplitude und Richtung innerhalb einer Materialstruktur in Echtzeitsystemen oder Produkten zu messen. Im Gegensatz zu aktuellen Lösungen für die multi-direktionale Dehnungsmessung, bieten die MWCNTs/Epoxide-Nanokomposite vielversprechende Ergebnisse in Bezug auf Langlebigkeit, leichte Verarbeitung und einstellbare Piezoresistivität. Im Unterschied zu kommerziell verfügbaren Ansätzen wird festgestellt, dassMWCNTs/Epoxide-Nanokomposite zur Riss-/Schadenserkennung in der Lage sind, den angelegten Riss direkt über einen bestimmten Bereich zu detektieren. Aus dem Einfluss der Feuchtigkeit hat sich herausgestellt, dass die Resistenz von Nanokompositen mit zunehmender Feuchtigkeitsbelastung durch Quellung des Polymers zunimmt. Temperaturuntersuchungen zeigen, dass MWCNTs/Epoxide-Nanokomposite aufgrund der thermischen Aktivierung von Ladungsträgern auf Temperatureinflüsse reagieren und die Temperaturempfindlichkeit mit der Erhöhung der Füllstoffkonzentration zunimmt. Der vorgeschlagene Ansatz kann durch die Kombination unterschiedlich hergestellte Sensoren zur Realisierung eines kompakten zur Überwachung des Zustands von Strukturen oder von multifunktionalen Sensoren weiterentwickelt werden, bei denen gleichzeitig Druck, Dehnung, Temperatur und Feuchtigkeit überwacht werden können.

Page generated in 0.0543 seconds